Advertisement

Journal of the American Society for Mass Spectrometry

, Volume 19, Issue 9, pp 1275–1280 | Cite as

QCAL—a novel standard for assessing instrument conditions for proteome analysis

  • Claire E. Eyers
  • Deborah M. Simpson
  • Stephen C. C. Wong
  • Robert J. Beynon
  • Simon J. Gaskell
Short Communication

Abstract

If proteome datasets are to be collated, shared, and merged for higher level proteome analyses, there is a need for generally accepted strategies and reagents for optimization and standardization of instrument performance. At present, there is no single protein or peptide standard set that is capable of assessing instrument performance for peptide separation and analysis in this manner. To create such a standard, we have used the recently described QconCAT methodology to generate an artificial protein, QCAL. This protein, a concatenation of tryptic peptides that is expressed in E. coli, provides a stoichiometrically controlled mixture of peptides that are amenable to analysis by all commonly used instrumentation platforms for proteomics.

Keywords

Peptide Tryptic Peptide Instrument Resolution Homoarginine Artificial Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Taylor, C. F.; Paton, N. W.; Lilley, K. S.; Binz, P. A.; Julian, R. K. Jr.; Jones, A. R.; Zhu, W.; Apweiler, R.; Aebersold, R.; Deutsch, E. W.; Dunn, M. J.; Heck, A. J.; Leitner, A.; Macht, M.; Mann, M.; Martens, L.; Neubert, T. A.; Patterson, S. D.; Ping, P.; Seymour, S. L.; Souda, P.; Tsugita, A.; Vandekerckhove, J.; Vondriska, T. M.; Whitelegge, J. P.; Wilkins, M. R.; Xenarios, I.; Yates, J. R. III; Hermjakob, H. The Minimum Information about a Proteomics Experiment (MIAPE). Nat. Biotechnol. 2007, 25, 887–893.CrossRefGoogle Scholar
  2. 2.
    Beynon, R. J.; Doherty, M. K.; Pratt, J. M.; Gaskell, S. J. Multiplexed Absolute Quantification in Proteomics Using Artificial QCAT Proteins of Concatenated signature Peptides. Nat. Methods. 2005, 2, 587–589.CrossRefGoogle Scholar
  3. 3.
    Pratt, J. M.; Simpson, D. M.; Doherty, M. K.; Rivers, J.; Gaskell, S. J.; Beynon, R. J. Multiplexed Absolute Quantification for Proteomics Using Concatenated Signature Peptides Encoded by QconCAT Genes. Nat. Protoc. 2006, 1, 1029–1043.CrossRefGoogle Scholar
  4. 4.
    Rivers, J.; Simpson, D. M.; Robertson, D. H.; Gaskell, S. J.; Beynon, R. J. Absolute Multiplexed Quantitative Analysis of Protein Expression During Muscle Development Using QconCAT. Mol. Cell. Proteom. 2007, 6, 1416–1427.CrossRefGoogle Scholar
  5. 5.
    Cottrell, J. S. Protein Identification by Peptide Mass Fingerprinting. Pept. Res. 1994, 7, 115–124.Google Scholar
  6. 6.
    Krause, E.; Wenschuh, H.; Jungblut, P. R. The Dominance of Arginine-Containing Peptides in MALDI-Derived Tryptic Mass Fingerprints of Proteins. Anal. Chem. 1999, 71, 4160–4165.CrossRefGoogle Scholar
  7. 7.
    Brancia, F. L.; Oliver, S. G.; Gaskell, S. J. Improved Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis of Tryptic Hydrolysates of Proteins Following Guanidination of Lysine-Containing Peptides. Rapid Commun. Mass Spectrom. 2000, 14, 2070–2073.CrossRefGoogle Scholar
  8. 8.
    Beardsley, R. L.; Karty, J. A.; Reilly, J. P. Enhancing the Intensities of Lysine-Terminated Tryptic Peptide Ions in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 2147–2153.CrossRefGoogle Scholar
  9. 9.
    Hale, J. E.; Butler, J. P.; Knierman, M. D.; Becker, G. W. Increased Sensitivity of Tryptic Peptide Detection by MALDI-TOF Mass Spectrometry is Achieved by Conversion of Lysine to Homoarginine. Anal. Biochem. 2000, 287, 110–117.CrossRefGoogle Scholar
  10. 10.
    Song, Y.; Schowen, R. L.; Borchardt, R. T.; Topp, E. M. Effect of ‘Ph’ on the Rate of Asparagine Deamidation in Polymeric Formulations: ‘pH’ Rate Profile. J. Pharm. Sci. 2001, 90, 141–156.CrossRefGoogle Scholar
  11. 11.
    Beausoleil, S. A.; Villen, J.; Gerber, S. A.; Rush, J.; Gygi, S. P. A Probability-Based Approach for High-Throughput Protein Phosphorylation Analysis and Site Localization. Nat. Biotechnol. 2006, 24, 1285–1292.CrossRefGoogle Scholar
  12. 12.
    Olsen, J. V.; de Godoy, L. M.; Li, G.; Macek, B.; Mortensen, P.; Pesch, R.; Makarov, A.; Lange, O.; Horning, S.; Mann, M. Parts per Million Mass Accuracy on an Orbitrap Mass Spectrometer via Lock Mass Injection into a C-Trap. Mol. Cell. Proteom. 2005, 4, 2010–2021.CrossRefGoogle Scholar
  13. 13.
    Rivers, J.; McDonald, L.; Edwards, I. J.; Beynon, R. J. Asparagine Deamidation and the Role of Higher Order Protein Structure. J. Proteome Res. 2008, 7, 921–927.CrossRefGoogle Scholar
  14. 14.
    Sun, W.; Wu, S.; Wang, X.; Zheng, D.; Gao, Y. A Systematical Analysis of Tryptic Peptide Identification with Reverse Phase Liquid Chromatography and Electrospray Ion Trap Mass Spectrometry. Genom. Proteom. Bioinformatics. 2004, 2, 174–183.Google Scholar
  15. 15.
    Washburn, M. P.; Wolters, D.; Yates, J. R. III Large-Scale Analysis of the Yeast Proteome by Multidimensional Protein Identification Technology. Nat. Biotechnol. 2001, 19, 242–247.CrossRefGoogle Scholar
  16. 16.
    Krokhin, O. V. Sequence-Specific Retention Calculator: Algorithm for Peptide Retention Prediction in Ion-Pair RP-HPLC: Application to 300- and 100-A Pore Size C18 Sorbents. Anal. Chem. 2006, 78, 7785–7795.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Claire E. Eyers
    • 1
  • Deborah M. Simpson
    • 2
  • Stephen C. C. Wong
    • 1
  • Robert J. Beynon
    • 2
  • Simon J. Gaskell
    • 1
  1. 1.Michael Barber Centre for Mass SpectrometryThe University of Manchester, Manchester Interdisciplinary BiocentreManchesterUK
  2. 2.Protein and Functional Genomics Group, Department of Veterinary Preclinical Sciences, Faculty of Veterinary SciencesUniversity of LiverpoolLiverpoolUnited Kingdom

Personalised recommendations