Advertisement

Hydration energies of deprotonated amino acids from gas phase equilibria measurements

  • Henryk WincelEmail author
Articles

Abstract

Singly hydrated clusters of deprotonated amino acids were studied using an electrospray high-pressure mass spectrometer equipped with a pulsed ion-beam reaction chamber. Thermochemical data, ΔH o , ΔS o , and ΔG o , for the hydration reaction [AA − H] + H2O = [AA − H]·(H2O) were obtained from gas-phase equilibria determinations for AA = Gly, Ala, Val, Pro, Phe, Lys, Met, Trp, Gln, Arg, and Asp. The hydration free-energy changes are found to depend significantly on the side-chain substituents. The water binding energy in [AA − H]·(H2O) increases with the gas-phase acidity of AA. The anionic hydrogen bond strengths in [AA − H]·(H2O) are compared with those of the cationic bonds in the corresponding AAH+·(H2O) systems.

Keywords

Reaction Chamber Interface Plate Hydration Energy Hydration Free Energy Arrival Time Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wyttenbach T.; Bowers M. T. Intramolecular Interactions in Biomolecular Systems Examined by Mass Spectrometry. Ann. Rev. Phys. Chem. 2007, 58, 511–533.CrossRefGoogle Scholar
  2. 2.
    Klassen J. S.; Blades A. T.; Kebarle P. Determinations of Ion-Molecule Equilibria Involving Ions Produced by Electrospray: Hydration of Protonated Amines, Diamines, and Some Small Peptides. J. Phys. Chem. 1995, 99, 15509–15517.CrossRefGoogle Scholar
  3. 3.
    Woenckhaus J.; Mao Y.; Jarrold M. F. Hydration of Gas Phase Proteins: Folded +5 and Unfolded +7 Charge States of cytochrome. c. J. Phys. Chem. B. 1997, 101, 847–851.CrossRefGoogle Scholar
  4. 4.
    Woenckhaus J.; Hudgins R. R.; Jarrold M. F. Hydration of Gas-Phase Proteins: A Special Hydration Site on Gas-Phase BPTI. J. Am. Chem. Soc. 1997, 119, 9586–9587.CrossRefGoogle Scholar
  5. 5.
    Liu D.; Wyttenbach T.; Barran P. E.; Bowers M. T. Sequential Hydration of Small Protonated Peptides. J. Am. Chem. Soc. 2003, 125, 8458–8464.CrossRefGoogle Scholar
  6. 6.
    Liu D.; Wyttenbach T.; Bowers M. T. Hydration of Protonated Primary Amines: Effects of Intermolecular and Intramolecular Hydrogen Bonds. Int. J. Mass Spectrom. 2004, 236, 81–90.CrossRefGoogle Scholar
  7. 7.
    Ai H.; Bu Y. Reservation Energy Bonds and Structural Stability of Series of Multihydrated (nH2O = 1–10) Glycine-H+M+ (M = Li, Na, or K) Complexes. J. Phys. Chem. B. 2004, 108, 1241–1254.CrossRefGoogle Scholar
  8. 8.
    Wyttenbach T.; Liu D.; Bowers M. T. Hydration of Small Peptides. Int. J. Mass Spectrom. 2005, 240, 221–232.CrossRefGoogle Scholar
  9. 9.
    Kamariotis A.; Boyarkin O. V.; Mercier S. R.; Beck R. D.; Bush M. F.; Williams E. R.; Rizzo T. R. Infrared Spectroscopy of Hydrated Amino Acids in the Gas Phase: Protonated and Lithiated Valine. J. Am. Chem. Soc. 2006, 128, 905–916.CrossRefGoogle Scholar
  10. 10.
    Rozman M.; Srzic D.; Klasinc L. Gas-Phase Interaction of Protonated Lysine with Water. Int. J. Mass Spectrom. 2006, 253, 201–206.CrossRefGoogle Scholar
  11. 11.
    Toyama N.; Kohno J.; Marun F.; Kondow T. Solvation Structure of Arginine in Aqueous Solution Studied by Liquid Beam Technique. Chem. Phys. Lett. 2006, 419, 369–373.CrossRefGoogle Scholar
  12. 12.
    Wincel H. Hydration of Gas-Phase Protonated Alkylamines, Amino Acids, and Dipeptides Produced by Electrospray. Int. J. Mass Spectrom. 2006, 251, 23–31.CrossRefGoogle Scholar
  13. 13.
    Wincel H. Hydration Energies of Protonated Amino Acids. Chem. Phys. Lett. 2007, 439, 157–161.CrossRefGoogle Scholar
  14. 14.
    Michaux C.; Wouters J.; Jacquemin D.; Perpète E. A. A Theoretical Investigation of the Hydrated Glycine Cation Energetics and Structures. Chem. Phys. Lett. 2007, 445, 57–61.CrossRefGoogle Scholar
  15. 15.
    Rozman M. The Gas-Phase H/D Exchange Mechanism of Protonated Amino Acids. J. Am. Soc. Mass Spectrom. 2005, 16, 1846–1852.CrossRefGoogle Scholar
  16. 16.
    Jockusch R. A.; Lemoff A. S.; Williams E. R. Ion and Water Coordination on the Structure of a Gas-Phase Amino Acid. J. Am. Chem. Soc. 2001, 123, 12255–12265.CrossRefGoogle Scholar
  17. 17.
    Jockusch R. A.; Lemoff A. S.; Williams E. R. Hydration of Valine—Cation Complexes in the Gas Phase: On the Number of Water Molecules Necessary to Form a Zwitterion. J. Phys. Chem. A. 2001, 105, 10929–10942.CrossRefGoogle Scholar
  18. 18.
    Lemoff A. S.; Bush M. F.; Williams E. R. Binding Energies of Water to Sodiated Valine and Structural Isomers in the Gas Phase: The Effect of Proton Affinity on Zwitterion Stability. J. Am. Chem. Soc. 2003, 125, 13576–13584.CrossRefGoogle Scholar
  19. 19.
    Lemoff A. S.; Williams E. R. Binding Energies of Water to Lithiated Valine: Formation of Solution-Phase Structure in Vacuo. J. Am. Soc. Mass Spectrom. 2004, 15, 1014–1024.CrossRefGoogle Scholar
  20. 20.
    Lemoff A. S.; Bush M. F.; Williams E. R. Structures of Cationized Proline Analogues: Evidence for the Zwitterionic Form. J. Phys. Chem. A. 2005, 109, 1903–1910.CrossRefGoogle Scholar
  21. 21.
    Lemoff A. S.; Bush M. F.; Wu C.-C.; Williams E. R. Structures and Hydration Enthalpies of Cationized Glutamine and Structural Analogues in the Gas Phase. J. Am. Chem. Soc. 2005, 127, 10276–10286.CrossRefGoogle Scholar
  22. 22.
    Lemoff A. S.; Wu C.-C.; Bush M. F.; Williams E. R. Binding Energies of Water to Doubly Hydrated Cationized Glutamine and Structural Analogues in the Gas Phase. J. Phys. Chem. A. 2006, 110, 3662–3669.CrossRefGoogle Scholar
  23. 23.
    Lemoff A. S.; Bush M. F.; O’Brien J. T.; Williams E. R. Structures of Lithiated Lysine and Structural Analogues in the Gas Phase: Effects of Water and Proton Affinity on Zwitterionic Stability. J. Phys. Chem. A. 2006, 110, 8433–8442.CrossRefGoogle Scholar
  24. 24.
    Ye S. J.; Moision R. M.; Armentrout P. B. Sequential Bond Energies of Water to Sodium Glycine Cation. Int. J. Mass Spectrom. 2005, 240, 233–248.CrossRefGoogle Scholar
  25. 25.
    Ye S. J.; Moision R. M.; Armentrout P. B. Sequential Bond Energies of Water to Sodium Proline Cation. Int. J. Mass Spectrom. 2006, 253, 288–304.CrossRefGoogle Scholar
  26. 26.
    Remko M.; Rode B. M. Effect of Metal Ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and Water Coordination on the Structure of Glycine and Zwitterionic Glycine. J. Phys. Chem. A. 2006, 110, 1960–1967.CrossRefGoogle Scholar
  27. 27.
    Bush M. F.; Prell J. S.; Saykally R. J.; Williams E. R. One Water Molecule Stabilizes the Cationized Arginine Zwitterions. J. Am. Chem. Soc. 2007, 129, 13544–13553.CrossRefGoogle Scholar
  28. 28.
    Wincel H. Hydration Energies of Sodiated Amino Acids from Gas-Phase Equilibria Determinations. J. Phys. Chem. A. 2007, 111, 5784–5791.CrossRefGoogle Scholar
  29. 29.
    Wincel H. Hydration of Potassiated Amino Acids in the Gas Phase. J. Am. Soc. Mass Spectrom. 2007, 18, 2083–2089.CrossRefGoogle Scholar
  30. 30.
    Gao J.; Garner D. S.; Jorgensen W. J. Ab Initio Study of Structures and Binding Energies for Anion—Water Complexes. J. Am. Chem. Soc. 1986, 108, 4784–4790.CrossRefGoogle Scholar
  31. 31.
    Meot-Ner Mautner M.; Sieck L. The Ionic Hydrogen Bond and Ion Solvation. 5: OH-O Bonds. Gas-Phase Solvation and Clustering of Alkoxide and Carboxylate Anions. J. Am. Chem. Soc. 1986, 108, 7525–7529.CrossRefGoogle Scholar
  32. 32.
    Meot-Ner Mautner M. Ionic Hydrogen Bond and Ion Solvation: 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO with Cl, CN, and SH. J. Am. Chem. Soc. 1988, 110, 3854–3858.CrossRefGoogle Scholar
  33. 33.
    Blades A. T.; Klassen J. S.; Kebarle P. Free Energies of Hydration in the Gas Phase of the Anions of Some Oxo Acids of C, N, S, P, Cl, and I. J. Am. Chem. Soc. 1995, 117, 10563–10571.CrossRefGoogle Scholar
  34. 34.
    Viidanoja J.; Reiner T.; Kiendler A.; Grimm F.; Arnold F. Laboratory Investigations of Negative Ion Molecule Reactions of Propionic, Butyric, Glyoxylic, Pyruvic, and Pinonic Acids. Int. J. Mass Spectrom. 2000, 194, 53–68.CrossRefGoogle Scholar
  35. 35.
    Liu D.; Wyttenbach T.; Carpenter C. J.; Bowers M. T. Investigation of Noncovalent Interactions in Deprotonated Peptides: Structural and Energetic Competition Between Aggregation and Hydration. J. Am. Chem. Soc. 2004, 126, 3261–3270.CrossRefGoogle Scholar
  36. 36.
    Degtyarenko I. M.; Jalkannen K. J.; Gurtovenko A. A.; Nieminen R. M. L-Alanine in a Droplet of Water: A Density-Functional Molecular Dynamics Study. J. Phys. Chem. B. 2007, 111, 4227–4234.CrossRefGoogle Scholar
  37. 37.
    Wyttenbach T.; Bowers M. T. Gas-Phase Conformations: The Ion Mobility/Ion Chromatography Method. Top. Curr. Chem. 2003, 225, 207–232.CrossRefGoogle Scholar
  38. 38.
    Jones C. M.; Bernier M.; Carson E.; Colyer K. E.; Metz R.; Pawlow A.; Wischow E. D.; Webb I.; Andriole E. J.; Poutsma J. C. Gas-Phase Acidities of the 20 Protein Amino Acids. Int. J. Mass Spectrom. 2007, 267, 54–62.CrossRefGoogle Scholar
  39. 39.
    Li Z.; Matus M. H.; Velazquez H. A.; Dixon D. A.; Casady C. J. Gas-Phase Acidities of Aspartic Acid, Glutamic Acid, and Their Amino Acid Amides. Int. J. Mass Spectrom. 2007, 265, 213–223.CrossRefGoogle Scholar
  40. 40.
    Bach R. D.; Dmitrenko O.; Glukhovstev M. N. A Theoretical Study of the Effect of a Tetra-Alkylammonium Counterion on the Hydrogen Bond Strength in Z-Hydrogen Maleate. J. Am. Chem. Soc. 2001, 123, 7134–7145.CrossRefGoogle Scholar
  41. 41.
    Blades A. T.; Klassen J. S.; Kebarle P. Determination of Ion-Solvent Equilibria in the Gas Phase: Hydration of Diprotonated Diamines and Bis(Trimethylammonium) Alkane. J. Am. Chem. Soc. 1996, 118, 12437–12442.CrossRefGoogle Scholar
  42. 42.
    Lias S. G.; Bartmes J. E.; Liebman J. F.; Holmes J. L.; Levin R. D.; Mallard W. G.. J. Phys. Chem. Ref. Data. 1988Suppl. 1, 17.Google Scholar
  43. 43.
    Maksic Z. B.; Kovacevic B. Towards the Absolute Proton Affinities of 20 α-Amino Acids. Chem. Phys. Lett. 1999, 307, 497–504.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  1. 1.Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland

Personalised recommendations