Preparation of single cells for imaging/profiling mass spectrometry

  • Elena S. F. Berman
  • Susan L. Fortson
  • Kyle D. Checchi
  • Ligang Wu
  • James S. Felton
  • Kuang Jen J. Wu
  • Kristen S. Kulp


Characterizing chemical changes within individual cells is important for determining fundamental mechanisms of biological processes that will lead to new biological insights and improved disease understanding. Analyzing biological systems with imaging and profiling mass spectrometry (MS) has gained popularity in recent years as a method for creating chemical maps of biological samples. To obtain mass spectra that provide relevant molecular information about individual cells, samples must be prepared so that salts and other cell culture components are removed from the cell surface and that the cell contents are rendered accessible to the desorption beam. We have designed a cellular preparation protocol for imaging/profiling MS that removes the majority of the interfering species derived from the cellular growth medium, preserves the basic morphology of the cells, and allows chemical profiling of the diffusible elements of the cytosol. Using this method, we are able to reproducibly analyze cells from three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation technique makes possible routine imaging/profiling MS analysis of individual cultured cells, allowing for understanding of molecular processes within individual cells.


Lawrence Livermore National Laboratory MCF7 Human Breast Cancer Cell Magnesium Acetate Cellular Preparation Phosphocholine Head Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Belu, A. M.; Graham, D. J.; Castner, D. G. Time-of-Flight Secondary Ion Mass Spectrometry: Techniques and Applications for the Characterization of Biomaterial Surfaces. Biomaterials 2003, 24, 3635–3653.CrossRefGoogle Scholar
  2. 2.
    Lockyer, N. P.; Vickerman, J. C. Progress in Cellular Analysis Using TOF-SIMS. Appl. Surf. Sci 2004, 231/232, 377–384.CrossRefGoogle Scholar
  3. 3.
    Rubakhin, S. S.; Jurchen, J. C.; Monroe, E. B.; Sweedler, J. V. Imaging Mass Spectrometry: Fundamentals and Applications to Drug Discovery. Drug Discov. Today 2005, 10, 823–837.CrossRefGoogle Scholar
  4. 4.
    Guerquin-Kern, J. L.; Wu, T. D.; Quintana, C.; Croisy, A. Progress in Analytical Imaging of the Cell by Dynamic Secondary Ion Mass Spectrometry (SIMS Microscopy). Biochim. Biophys. Acta 2005, 1724, 228–238.CrossRefGoogle Scholar
  5. 5.
    Chaurand, P.; Cornett, D. S.; Caprioli, R. M. Molecular Imaging of Thin Mammalian Tissue Sections by Mass Spectrometry. Curr. Opin. Biotechnol 2006, 17, 431–436.CrossRefGoogle Scholar
  6. 6.
    Reyzer, M. L.; Caprioli, R. M. MALDI-MS-Based Imaging of Small Molecules and Proteins in Tissues. Curr. Opin. Chem. Biol 2007, 11, 29–35.CrossRefGoogle Scholar
  7. 7.
    Elowitz, M. B.; Levine, A. J.; Siggia, E. D.; Swain, P. S. Stochastic Gene: Expression in a Single Cell. Science 2002, 297, 1183–1186.CrossRefGoogle Scholar
  8. 8.
    Luxembourg, S. L.; Mize, T. H.; McDonnell, L. A.; Heeren, R. M. A. High-Spatial Resolution: Mass Spectrometric Imaging of Peptide and Protein Distributions on a Surface. Anal. Chem. 2004, 76, 5339–5344.CrossRefGoogle Scholar
  9. 9.
    Jurchen, J. C.; Rubakhin, S. S.; Sweedler, J. V. MALDI-MS Imaging of Features Smaller Than the Size of the Laser Beam. J. Am. Soc. Mass Spectrom 2005, 16, 1654–1659.CrossRefGoogle Scholar
  10. 10.
    Rubakhin, S. S.; Greenough, W. T.; Sweedler, J. V. Spatial Profiling with MALDI MS: Distribution of Neuropeptides within Single Neurons. Anal. Chem. 2003, 75, 5374–5380.CrossRefGoogle Scholar
  11. 11.
    Romer, W.; Wu, T. D.; Duchambon, P.; Amessou, M.; Carrez, D.; Johannes, L.; Guerquin-Kern, J. L. Subcellular Localization of a 15N-Labeled Peptide Vector Using NanoSIMS Imaging. Appl. Surf. Sci 2006, 252, 6925–6930.CrossRefGoogle Scholar
  12. 12.
    Audinot, J.-N.; Guignard, C.; Migeon, H.-N.; Hoffmann, L. Study of the Mechanism of Diatom Cell Division by Means of 29Si Isotope Tracing. Appl. Surf. Sci 2006, 252, 6813–6815.CrossRefGoogle Scholar
  13. 13.
    McMahon, G.; Glassner, B. J.; Lechene, C. P. Quantitative Imaging of Cells with Multi-Isotope Imaging Mass Spectrometry (MIMS)-Nanoautography with Stable Isotope Tracers. Appl. Surf. Sci 2006, 252, 6895–6906.CrossRefGoogle Scholar
  14. 14.
    Fletcher, J. S.; Lockyer, N. P.; Vaidyanathan, S.; Vickerman, J. C. TOF-SIMS 3D Biomolecular Imaging of Xenopus laevis Oocytes Using Buckminsterfullerene (C60) Primary Ions. Anal. Chem. 2007, 79, 2199–2206.CrossRefGoogle Scholar
  15. 15.
    Ostrowski, S. G.; Kurczy, M. E.; Roddy, T. P.; Winograd, N.; Ewing, A. G. Secondary Ion MS Imaging to Relatively Quantify Cholesterol in the Membranes of Individual Cells from Differentially Treated Populations. Anal. Chem. 2007, 79, 3554–3560.CrossRefGoogle Scholar
  16. 16.
    Kulp, K. S.; Berman, E. S. F.; Knize, M. G.; Shattuck, D. L.; Nelson, E. J.; Wu, L.; Montgomery, J. L.; Felton, J. S.; Wu, K. J. Chemical and Biological Differentiation of Three Human Breast Cancer Cell Types Using Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). Anal. Chem. 2006, 78, 3651–3658.CrossRefGoogle Scholar
  17. 17.
    Liu, Q.; Guo, Z.; He, L. Mass Spectrometry Imaging of Small Molecules Using Desorption/Ionization on Silicon. Anal. Chem. 2007, 79, 3535–3541.CrossRefGoogle Scholar
  18. 18.
    Arlinghaus, H. F.; Kriegeskotte, C.; Fartmann, M.; Wittig, A.; Sauerwein, W.; Lipinsky, D. Mass Spectrometric: Characterization of Elements and Molecules in Cell Cultures and Tissues. Appl. Surf. Sci 2006, 252, 6941–6948.CrossRefGoogle Scholar
  19. 19.
    Wells, W. A. The Invention of Freeze Fracture Electron Microscopy (EM) and the Determination of Membrane Structure. J. Cell Biol 2005, 168, 174–175.CrossRefGoogle Scholar
  20. 20.
    Steere, R. L. Electron Microscopy of Structural Detail in Frozen Biological Specimens. J. Biophys. Biochem. Cytol 1957, 3, 45–60.CrossRefGoogle Scholar
  21. 21.
    Chandra, S.; Morrison, G. H. Sample Preparation of Animal Tissues and Cell Cultures for Secondary Ion Mass Spectrometry (SIMS) Microscopy. Biol. Cell 1992, 74, 31–42.CrossRefGoogle Scholar
  22. 22.
    Parry, S.; Winograd, N. High-Resolution TOF-SIMS Imaging of Eukaryotic Cells Preserved in a Trehalose Matrix. Anal. Chem. 2005, 77, 7950–7957.CrossRefGoogle Scholar
  23. 23.
    Altelaar, A. F. M.; Klinkert, I.; Jalink, K.; de Lange, R. P. J.; Adan, R. A. H.; Heeren, R. M. A.; Piersma, S. R. Gold-Enhanced Biomolecular Surface Imaging of Cells and Tissue by SIMS and MALDI Mass Spectrometry. Anal. Chem. 2006, 78, 734–742.CrossRefGoogle Scholar
  24. 24.
    McDonnell, L. A.; Heeren, R. M. A. Imaging Mass Spectrometry. Mass Spectrom. Rev 2007, 26, 606–643.CrossRefGoogle Scholar
  25. 25.
    Stryer, L. Biochemistry 2nd ed. W. H. Freeman and Company: San Francisco, CA, 1981, p. 862.Google Scholar
  26. 26.
    Cambell, N. A. Biology 3rd ed.; The Benjamin/Cummings Publishing Company, Inc.: Redwood City, CA, 1993, p. 162.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Elena S. F. Berman
    • 1
  • Susan L. Fortson
    • 1
  • Kyle D. Checchi
    • 1
  • Ligang Wu
    • 1
  • James S. Felton
    • 1
  • Kuang Jen J. Wu
    • 1
  • Kristen S. Kulp
    • 1
  1. 1.Chemistry, Materials, Energy and Life Sciences DirectorateLawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations