Influence of charge state and sodium cationization on the electron detachment dissociation and infrared multiphoton dissociation of glycosaminoglycan oligosaccharides

  • Jeremy J. Wolff
  • Tatiana N. Laremore
  • Alexander M. Busch
  • Robert J. Linhardt
  • I. Jonathan Amster
Focus: Electron Capture Dissociation For MS/MS

Abstract

Electron detachment dissociation (EDD) Fourier transform mass spectrometry has recently been shown to be a useful method for tandem mass spectrometry analysis of sulfated glycosaminoglycans (GAGs). EDD produces abundant glycosidic and cross-ring fragmentations that are useful for localizing sites of sulfation in GAG oligosaccharides. Although EDD fragmentation can be used to characterize GAGs in a single tandem mass spectrometry experiment, SO3 loss accompanies many peaks and complicates the resulting mass spectra. In this work we demonstrate the ability to significantly decrease SO3 loss by selection of the proper ionized state of GAG precursor ions. When the degree of ionization is greater than the number of sulfate groups in an oligosaccharide, a significant reduction in SO3 loss is observed in the EDD mass spectra. These data suggested that SO3 loss is reduced when an electron is detached from carboxylate groups instead of sulfate. Electron detachment occurs preferentially from carboxylate versus sulfate for thermodynamic reasons, provided that carboxylate is in its ionized state. Ionization of the carboxylate group is achieved by selecting the appropriate precursor ion charge state, or by the replacement of protons with sodium cations. Increasing the ionization state by sodium cation addition decreases, but does not eliminate, SO3 loss from infrared multiphoton dissociation of the same GAG precursor ions.

Supplementary material

13361_2011_190600790_MOESM1_ESM.pdf (229 kb)
Supplementary material, approximately 235 KB.

References

  1. 1.
    Linhardt, R. J.; Toida, T. Role of Glycosaminoglycans in Cellular Communication. Acc. Chem. Res. 2004, 37, 431–438.CrossRefGoogle Scholar
  2. 2.
    Gotte, M. Syndecans in Inflammation. FASEB J. 2003, 17, 575–591.CrossRefGoogle Scholar
  3. 3.
    Fannon, M.; Forsten, K. E.; Nugent, M. A. Potentiation and Inhibition of bFGF Binding by Heparin: A Model for Regulation of Cellular Response. Biochemistry 2000, 39, 1434–1445.CrossRefGoogle Scholar
  4. 4.
    Wu, Z. L.; Zhang, L.; Yabe, T.; Kuberan, B.; Beeler, D. L.; Love, A.; Rosenberg, R. D. The Involvement of Heparan Sulfate (HS) in FGF1/HS/FGFR1 Signaling Complex. J. Biol. Chem. 2003, 278, 17121–17129.CrossRefGoogle Scholar
  5. 5.
    Sadir, R.; Imberty, A.; Baleux, F.; Lortat-Jacob, H. Heparan Sulfate/Heparin Oligosaccharides Protect Stromal Cell-derived Factor-1 (SDF-1)/CXCL12 against Proteolysis Induced by CD26/Dipeptidyl Peptidase IV. J. Biol. Chem. 2004, 279, 43854–43860.CrossRefGoogle Scholar
  6. 6.
    Iozzo, R. V.; San Antonio, J. D. Heparan Sulfate Proteoglycans: Heavy Hitters in the Angiogenesis Arena. J. Clin. Invest. 2001, 108, 349–355.CrossRefGoogle Scholar
  7. 7.
    Batinic, D.; Robey, F. A. The V3 Region of the Envelope Glycoprotein of Human Immunodeficiency Virus Type 1 Binds Sulfated Polysaccharides and CD4-derived Synthetic Peptides. J. Biol. Chem. 1992, 267, 6664–6671.Google Scholar
  8. 8.
    Chen, Y.; Maguire, T.; Hileman, R. E.; Fromm, J. R.; Esko, J. D.; Linhardt, R. J.; Marks, R. M. Dengue Virus Infectivity Depends on Envelope Protein Binding to Target Cell Heparan Sulfate. Nat. Med. 1997, 3, 866–871.CrossRefGoogle Scholar
  9. 9.
    Williams, R. K.; Straus, S. E. Specificity and Affinity of Binding of Herpes Simplex Virus Type 2 Glycoprotein B to Glycosaminoglycans. J. Virol. 1997, 71, 1375–1380.Google Scholar
  10. 10.
    Liu, D. F.; Shriver, Z.; Gi, Y. W.; Venkataraman, G.; Sasisekharan, R. Dynamic Regulation of Tumor Growth and Metastasis by Heparan Sulfate Glycosaminoglycans. Semin. Thromb. Hemost. 2002, 28, 67–78.CrossRefGoogle Scholar
  11. 11.
    Perrimon, N.; Bernfield, M. Cellular Functions of Proteoglycans—An Overview. Semin. Cell. Dev. Biol. 2001, 12, 65–67.CrossRefGoogle Scholar
  12. 12.
    Horne, A.; Gettins, P. H. 1-NMR Spectral Assignments for 2 Series of Heparin-Derived Oligosaccharides. Carbohydr. Res. 1992, 225, 43–57.CrossRefGoogle Scholar
  13. 13.
    Chi, L. L.; Amster, J.; Linhardt, R. J. Mass Spectrometry for the Analysis of Highly Charged Sulfated Carbohydrates. Curr. Anal. Chem. 2005, 1, 223–240.CrossRefGoogle Scholar
  14. 14.
    Dai, Y.; Whittal, R. M.; Bridges, C. A.; Isogai, Y.; Hindsgaul, O.; Li, L. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry for the analysis of monosulfated oligosaccharides. Carbohydr. Res. 1997, 304, 1–9.CrossRefGoogle Scholar
  15. 15.
    Miller, M. J. C.; Costello, C. E.; Malmstrom, A.; Zaia, J. A Tandem Mass Spectrometric Approach to Determination of Chondroitin/Dermatan Sulfate Oligosaccharide Glycoforms. Glycobiology 2006, 16, 502–513.CrossRefGoogle Scholar
  16. 16.
    Reinhold, V. N.; Carr, S. A.; Green, B. N.; Petitou, M.; Choay, J.; Sinay, P. Structural Characterization of Sulfated Glycosaminoglycans by Fast-Atom-Bombardment Mass-Spectrometry—Application to Heparin Fragments Prepared by Chemical Synthesis. Carbohydr. Res. 1987, 161, 305–313.CrossRefGoogle Scholar
  17. 17.
    Saad, O. M.; Leary, J. A. Compositional Analysis and Quantification of Heparin and Heparan Sulfate by Electrospray Ionization Ion Trap Mass Spectrometry. Anal. Chem. 2003, 75, 2985–2995.CrossRefGoogle Scholar
  18. 18.
    Saad, O. M.; Leary, J. A. Heparin Sequencing Using Enzymatic Digestion and ESI-MS with HOST: A Heparin/HS Oligosaccharide Sequencing Tool. Anal. Chem. 2005, 77, 5902–5911.CrossRefGoogle Scholar
  19. 19.
    Zaia, J.; Li, X.-Q.; Chan, S.-Y.; Costello, C. E. Tandem Mass Spectrometric Strategies for Determination of Sulfation Positions and Uronic Acid Epimerization in Chondroitin Sulfate Oligosaccharides. J. Am. Soc. Mass Spectrom. 2003, 14, 1270–1281.CrossRefGoogle Scholar
  20. 20.
    Zaia, J.; McClellan, J. E.; Costello, C. E. Tandem Mass Spectrometric Determination of the 4S/6S Sulfation Sequence in Chondroitin Sulfate Oligosaccharides. Anal. Chem. 2001, 73, 6030–6039.CrossRefGoogle Scholar
  21. 21.
    Budnik, B. A.; Haselmann, K. F.; Zubarev, R. A. Electron Detachment Dissociation of Peptide Di-Anions: An Electron-Hole Recombination Phenomenon. Chem. Phys. Lett. 2001, 342, 299–302.CrossRefGoogle Scholar
  22. 22.
    Wolff, J. J.; Laremore, T. N.; Busch, A. M.; Linhardt, R. J.; Amster, I. J. Electron Detachment Dissociation of Dermatan Sulfate Oligosaccharides. J. Am. Soc. Mass Spectrom. 2008, 19, 294–304.CrossRefGoogle Scholar
  23. 23.
    Wolff, J. J.; Amster, I. J.; Chi, L.; Linhardt, R. J. Electron Detachment Dissociation of Glycosaminoglycan Tetrasaccharides. J. Am. Soc. Mass Spectrom. 2007, 18, 234–244.CrossRefGoogle Scholar
  24. 24.
    Wolff, J. J.; Chi, L. L.; Linhardt, R. J.; Amster, I. J. Distinguishing Glucuronic from Iduronic Acid in Glycosaminoglycan Tetrasaccharides by Using Electron Detachment Dissociation. Anal. Chem. 2007, 79, 2015–2022.CrossRefGoogle Scholar
  25. 25.
    Zaia, J.; Costello, C. E. Tandem Mass Spectrometry of Sulfated Heparin-Like Glycosaminoglycan Oligosaccharides. Anal. Chem. 2003, 75, 2445–2455.CrossRefGoogle Scholar
  26. 26.
    Pervin, A.; Gallo, C.; Jandik, K. A.; Han, X.-J.; Linhardt, R. J. Preparation and Structural Characterization of Large Heparin-Derived Oligosaccharides. Glycobiology 1995, 5, 83–95.CrossRefGoogle Scholar
  27. 27.
    Heck, A. J. R.; de Koning, L. J.; Pinkse, F. A.; Nibbering, N. M. M. Mass-Specific Selection of Ions in Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry: Unintentional off-Resonance Cyclotron Excitation of Selected Ions. Rapid Commun. Mass Spectrom. 1991, 5, 406–414.CrossRefGoogle Scholar
  28. 28.
    Domon, B.; Costello, C. E. A Systematic Nomenclature for Carbohydrate Fragmentations in FAB-MS/MS Spectra of Glycoconjugates. Glycoconjugate J. 1988, 5, 397–409.CrossRefGoogle Scholar
  29. 29.
    Budnik, B. A.; Haselmann, K. F.; Elkin, Y. N.; Gorbach, V. I.; Zubarev, R. A. Applications of Electron-Ion Dissociation Reactions for Analysis of Polycationic Chitooligosaccharides in Fourier Transform Mass Spectrometry. Anal. Chem. 2003, 75, 5994–6001.CrossRefGoogle Scholar
  30. 30.
    Cody, R. B.; Freiser, B. S. Electron Impact Excitation of Ions from Organics: An Alternative to Collision Induced Dissociation. Anal. Chem. 1979, 51, 547–551.CrossRefGoogle Scholar
  31. 31.
    Cody, R. B.; Freiser, B. S. Electron Impact Excitation of Ions in Fourier Transform Mass Spectrometry. Anal. Chem. 1987, 59, 1054–1056.CrossRefGoogle Scholar
  32. 32.
    Horn, D. M.; Ge, Y.; McLafferty, F. W. Activated Ion: Electron Capture Dissociation for Mass Spectral Sequencing of Larger (42 kDa) Proteins. Anal. Chem. 2000, 72, 4778–4784.CrossRefGoogle Scholar
  33. 33.
    Sze, S. K.; Ge, Y.; Oh, H. B.; McLafferty, F. W. Top-Down Mass Spectrometry of a 29-kDa Protein for Characterization of any Posttranslational Modification to within One Residueyy. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 1774–1779.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Jeremy J. Wolff
    • 1
  • Tatiana N. Laremore
    • 2
  • Alexander M. Busch
    • 4
  • Robert J. Linhardt
    • 2
    • 3
    • 4
  • I. Jonathan Amster
    • 1
  1. 1.Department of ChemistryUniversity of GeorgiaAthensUSA
  2. 2.Department of Chemistry and Chemical BiologyRensselaer Polytechnic InstituteTroyUSA
  3. 3.Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyUSA
  4. 4.Department of BiologyRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations