Identification of isomeric N-glycan structures by mass spectrometry with 157 nm laser-induced photofragmentation

  • Arugadoss Devakumar
  • Yehia Mechref
  • Pilsoo Kang
  • Milos V. Novotny
  • James P. Reilly
Article

Abstract

Characterization of structural isomers has become increasingly important and extremely challenging in glycobiology. This communication demonstrates the capability of ion-trap mass spectrometry in conjunction with 157 nm photofragmentation to identify different structural isomers of permethylated N-glycans derived from ovalbumin without chromatographic separation. The results are compared with collision-induced dissociation (CID) experiments. Photodissociation generates extensive cross-ring fragment ions as well as diagnostic glycosidic product ions that are not usually observed in CID MS/MS experiments. The detection of these product ions aids in characterizing indigenous glycan isomers. The ion trap facilitates MSn experiments on the diagnostic glycosidic fragments and cross-ring product ions generated through photofragmentation, thus allowing unambiguous assignment of all of the isomeric structures associated with the model glycoprotein used in this study. Photofragmentation is demonstrated to be a powerful technique for the structural characterization of glycans.

Supplementary material

13361_2011_190701027_MOESM1_ESM.doc (130 kb)
Supplementary material, approximately 133 KB.

References

  1. 1.
    Varki, A. E. A. Essentials of Glycobiology; Cold Spring Harbor Laboratory Press: New York, 1999.Google Scholar
  2. 2.
    Campbell, C. T.; Yarema, K. J. Large-scale Approaches for Glycobiology. Genome Biol. 2005, 6, 231–238.CrossRefGoogle Scholar
  3. 3.
    Helenius, A.; Aebi, M. Intracellular Functions of N-Linked Glycans. Science. 2001, 291, 2364–2369.CrossRefGoogle Scholar
  4. 4.
    Rudd, P. M.; Elliott, T.; Cresswell, P.; Wilson, I. A.; Dwek, R. A. Glycosylation and the Immune System. Science 2001, 291, 2370–2376.CrossRefGoogle Scholar
  5. 5.
    Shriver, Z.; Raguram, S.; Sasisekharan, R. Glycomics: A Pathway to a Class of New and Improved Therapeutics. Nat. Rev. Drug Discov. 2004, 3, 863–873.CrossRefGoogle Scholar
  6. 6.
    Bianco, G. A.; Toscano, M. A.; Ilarregui, J. M.; Rabinovich, G. A. Impact of Protein-Glycan Interactions in the Regulation of Autoimmunity and Chronic Inflammation. Autoimmun. Rev. 2006, 5, 349–356.CrossRefGoogle Scholar
  7. 7.
    Varki, A. Biological Roles of Oligosaccharides: All of the Theories Are Correct. Glycobiology 1993, 3, 97–130.CrossRefGoogle Scholar
  8. 8.
    Mechref, Y.; Novotny, M. V. Structural Investigations of Glycoconjugates at High Sensitivity. Chem. Rev. 2002, 102, 321–369.CrossRefGoogle Scholar
  9. 9.
    Reinhold, V. N.; Reinhold, B. B.; Costello, C. E. Carbohydrate Molecular Weight Profiling, Sequence, Linkage and Branching Data: ES-MS and CID. Anal. Chem. 1995, 67, 1772–1784.CrossRefGoogle Scholar
  10. 10.
    Dommon, B.; Muller, D. R.; Richter, W. J. High Performance Tandem Mass Spectrometry for Sequence, Branching and Interglycosidic Linkage Analysis of Peracetylated Oligosaccharides. Biomed. Environ. Mass Spectrom. 1990, 19, 390–402.CrossRefGoogle Scholar
  11. 11.
    Dommon, B.; Muller, D. R.; Richter, W. J. Determination of Interglycosidic Linkages in Disaccharides by High Performance Tandem Mass Spectrometry. Int. J. Mass Spectrom. Ion Processes. 1990, 100, 301–311.CrossRefGoogle Scholar
  12. 12.
    Garozzo, D.; Giuffrida, M.; Impallomeni, G.; Ballistreri, A.; Montaudo, G. Determination of Linkage Position and Identification of the Reducing End in Linear Oligosaccharides by Negative Ion Fast Atom Bombardment Mass Spectrometry. Anal. Chem. 1990, 62, 279–286.CrossRefGoogle Scholar
  13. 13.
    Spengler, B.; Dolce, J. W.; Cotter, R. J. Infrared Laser Desorption Mass Spectrometry of Oligosaccharides: Fragmentation Mechanisms and Isomer Analysis. Anal. Chem. 1990, 62, 1731–1737.CrossRefGoogle Scholar
  14. 14.
    Carroll, J. A.; Ngoka, L.; Mccullough, S.; Gard, E.; Jones, A. D.; Lebrilla, C. B. Quadrupole Fourier Transform Mass Spectrometry of Oligosaccharides. Anal. Chem. 1991, 63, 2526–2529.CrossRefGoogle Scholar
  15. 15.
    Carroll, J. A.; Ngoka, L.; Beggs, C. G.; Lebrilla, C. B. Liquid Secondary Ion Mass Spectrometry/Fourier Transform Mass Spectrometry of Oligosaccharide Anions. Anal. Chem. 1993, 65, 1582–1587.CrossRefGoogle Scholar
  16. 16.
    Harvey, D. J.; Rudd, P. M.; Bateman, R. H.; Bordoli, R. S.; Howes, K.; Hoyes, J. B.; Vickers, R. G. Examination of Complex Oligosaccharides by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry on Time-of-Flight and Magnetic Sector Instruments. Org. Mass Spectrom. 1994, 29, 753–765.CrossRefGoogle Scholar
  17. 17.
    Harvey, D. J.; Naven, T. J. P.; Kuster, B.; Bateman, R. H.; Green, M. R.; Critchley, G. Comparison of Fragmentation Modes for the Structural Determination of Complex Oligosaccharides Ionized by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1995, 9, 1556–1561.CrossRefGoogle Scholar
  18. 18.
    Visuex, N.; deHoffmann, E.; Dommon, B. Structural Analysis of Permethylated Oligosaccharides by Electrospray Tandem Mass Spectrometry. Anal. Chem. 1997, 69, 3193–3198.CrossRefGoogle Scholar
  19. 19.
    Weiskopf, A. S.; Vouros, P.; Harvey, D. J. Characterization of Oligosaccharide Composition and Structure by Quadrupole Ion Trap Mass Spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1493–1504.CrossRefGoogle Scholar
  20. 20.
    Naven, T. J. P.; Harvey, D. J.; Brown, J.; Critchley, G. Fragmentation of Complex Carbohydrates Following Ionization by Matrix-Assisted Laser Desorption with an Instrument Fitted with Time-Lag Focusing. Rapid Commun. Mass Spectrom. 1997, 11, 1681–1686.CrossRefGoogle Scholar
  21. 21.
    Harvey, D. J. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Carbohydrates. Mass Spectrom. Rev. 1999, 18, 349–451.CrossRefGoogle Scholar
  22. 22.
    Mechref, Y.; Baker, A. G.; Novotny, M. V. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Neutral and Acidic Oligosaccharides with Collision-Induced Dissociation. Carbohydr. Res. 1998, 313, 145–155.CrossRefGoogle Scholar
  23. 23.
    Weiskopf, A. S.; Vouros, P.; Harvey, D. J. Electrospray Ionization-Ion Trap Mass Spectrometry for Structural Analysis of Complex N-Linked Glycoprotein Oligosaccharides. Anal. Chem. 1998, 70, 4441–4447.CrossRefGoogle Scholar
  24. 24.
    Sheeley, D. M.; Reinhold, V. N. Structural Characterization of Carbohydrate Sequence, Linkage, and Branching in a Quadrupole Ion Trap Mass Spectrometer: Neutral Oligosaccharides and N-Linked Glycans. Anal. Chem. 1998, 70, 3053–3059.CrossRefGoogle Scholar
  25. 25.
    Konig, S.; Leary, J. A. Evidence for Linkage Position Determination in Cobalt Co-ordinated Pentasaccharides Using Ion Trap Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1998, 9, 1125–1134.CrossRefGoogle Scholar
  26. 26.
    Solouki, T.; Reinhold, B. B.; Costello, C. E.; O’Malley, M.; Guan, S. H.; Marshall, A. G. Electrospray Ionization and Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Permethylated Oligosaccharides. Anal. Chem. 1998, 70, 857–864.CrossRefGoogle Scholar
  27. 27.
    Harvey, D. J. Electrospray Mass Spectrometry and Fragmentation of N-Linked Carbohydrates Derivatized at the Reducing Terminus. J. Am. Soc. Mass Spectrom. 2000, 11, 900–915.CrossRefGoogle Scholar
  28. 28.
    Harvey, D. J. Collision-Induced Fragmentation of Underivatized N-Linked Carbohydrates Ionized by Electrospray. J. Mass Spectrom. 2000, 35, 1178–1190.CrossRefGoogle Scholar
  29. 29.
    Harvey, D. J.; Bateman, R. H.; Bordoli, R. S.; Tyldesley, R. Ionisation and Fragmentation of Complex Glycans with a Quadrupole Time-of-Flight Mass Spectrometer Fitted with a Matrix-Assisted Laser Desorption/Ionisation Ion Source. Rapid Commun. Mass Spectrom. 2000, 14, 2135–2142.CrossRefGoogle Scholar
  30. 30.
    Hunnam, V.; Harvey, D. J.; Priestman, D. A.; Bateman, R. H.; Bordoli, R. S.; Tyldesley, R. Ionization and Fragmentation of Neutral and Acidic Glycosphingolipids with a Q-TOF Mass Spectrometer Fitted with a MALDI Ion Source. J. Am. Soc. Mass Spectrom. 2001, 12, 1220–1225.CrossRefGoogle Scholar
  31. 31.
    Spengler, B.; Kirsch, D.; Kaufmann, R.; Lemoine, J. Structural Analysis of Branched Oligosaccharides Using Post-Source Decay in Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Org. Mass Spectrom. 1994, 12, 782–787.CrossRefGoogle Scholar
  32. 32.
    Sato, Y.; Suzuki, M.; Nirasawa, T.; Suzuki, A.; Endo, T. Microsequencing of Glycans Using 2-Aminobenzamide and MALDI-TOF Mass Spectrometry: Occurrence of Unique Linkage-Dependent Fragmentation. Anal. Chem. 2000, 72, 1207–1216.CrossRefGoogle Scholar
  33. 33.
    Rouse, J. C.; Strang, A.-M.; Yu, W.; Vath, J. E. Isomeric Differentiation of Asparagine-Linked Oligosaccharides by Matrix-Assisted Laser Desorption-Ionization Postsource Decay Time-of-Flight Mass Spectrometry. Anal. Biochem. 1998, 256, 33–46.CrossRefGoogle Scholar
  34. 34.
    Mechref, Y.; Novotny, M. V.; Krishnan, C. Structural Characterization of Oligosaccharides Using Maldi-TOF/TOF Tandem Mass Spectrometry. Anal. Chem. 2003, 75, 4895–4903.CrossRefGoogle Scholar
  35. 35.
    Mechref, Y.; Kang, P.; Novotny, M. V. Differentiating Structural Isomers of Sialylated Glycans by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight/Time-of-Flight Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 1381–1389.CrossRefGoogle Scholar
  36. 36.
    Spina, E. S. L.; Romeo, D.; Impallomeni, G.; Garozzo, D.; Waidelich, D.; Glueckmann, M. New Fragmentation Mechanisms in Matrix-Assisted Laser desorption/Ionization Time-of-Flight/Time-of-Flight Tandem Mass Spectrometry of Carbohydrates. Rapid Commun. Mass Spectrom. 2004, 18, 392–398.CrossRefGoogle Scholar
  37. 37.
    Morelle, W.; Slomianny, M.-C.; Diemer, H.; Schaeffer, C.; van Dorsselaer, A.; Michalski, J.-C. Fragmentation Characteristics of Neutral N-Linked Glycans Using a MALDI-TOF/TOF Tandem Mass Spectometer. Anal. Chem. 2004, 76, 2343–2354.CrossRefGoogle Scholar
  38. 38.
    Morelle, W.; Slomianny, M.-C.; Diemer, H.; Schaeffer, C.; van Dorsselaer, A.; Michalski, J.-C. Fragmentation Characteristics of Permethylated Oligosaccharides Using a Matrix-Assisted Laser Desorption/Ionization Two-Stage Time-of-Flight (TOF/TOF) Tandem Mass Spectrometer. Rapid Commun. Mass Spectrom. 2004, 18, 2637–2649.CrossRefGoogle Scholar
  39. 39.
    Ashline, D. J.; Lapadula, A. J.; Liu, Y. H.; Lin, M.; Grace, M.; Pramanik, B.; Reinhold, V. N. Carbohydrate Structural Isomers Analyzed by Sequential Mass Spectrometry. Anal. Chem. 2007, 79, 3830–3842.CrossRefGoogle Scholar
  40. 40.
    Shi, S. D.-H.; Hendrickson, C. L.; Marshall, A. G.; Seigel, M. M.; Kong, F.; Carter, G. T. Structural Validation of Saccharomicins by High Resolution and High Mass Accuracy Fourier Transform-Ion Cyclotron Resonance-Mass Spectrometry and Infrared Multiphoton Dissociation Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1999, 10, 1285–1290.CrossRefGoogle Scholar
  41. 41.
    Xie, Y.; Lebrilla, C. B. Infrared Multiphoton Dissociation of Alkali Metal-Coordinated Oligosaccharides. Anal. Chem. 2003, 75, 1590–1598.CrossRefGoogle Scholar
  42. 42.
    Zhang, J.; Schubothe, K.; Li, B.; Russell, S.; Lebrilla, C. B. Infrared Multiphoton Dissociation of O-Linked Mucin-Type Oligosaccharides. Anal. Chem. 2005, 77, 208–214.CrossRefGoogle Scholar
  43. 43.
    Lancaster, K. S.; An, H. J.; Li, B.; Lebrilla, C. B. Interrogation of N-Linked Oligosaccharides Using Infrared Multiphoton Dissociation in FT-ICR Mass Spectrometry. Anal. Chem. 2006, 78, 4990–4997.CrossRefGoogle Scholar
  44. 44.
    Budnik, B. A.; Haselmann, K. F.; Elkin, Y.; Gorbach, V. I.; Zuberev, R. A. Applications of Electron-Ion Dissociation Reactions for Analysis of Polycationic Chitooligosaccharides in Fourier Transform Mass Spectrometry. Anal. Chem. 2003, 75, 5994–6001.CrossRefGoogle Scholar
  45. 45.
    Adamson, J. T.; Hakansson, K. Electron Capture Dissociation of Oligosaccharides Ionized with Alkali, Alkaline Earth, and Transition Metals. Anal. Chem. 2007, 79, 2901–2910.CrossRefGoogle Scholar
  46. 46.
    Thompson, M. S.; Cui, W.; Reilly, J. P. Fragmentation of Singly-charged Peptides by Photodissociation at 157 nm. Angew. Chem. Int. Ed. Engl. 2004, 43, 4791–4794.Google Scholar
  47. 47.
    Cui, W.; Thompson, M. S.; Reilly, J. P. Pathways of Peptide Ion Fragmentation Induced by Vacuum Ultraviolet Light. J. Am. Soc. Mass Spectrom. 2005, 16, 1384–1398.CrossRefGoogle Scholar
  48. 48.
    Kim, T. Y.; Thompson, M. S.; Reilly, J. P. Peptide Photodissociation at 157 nm in a Linear Ion Trap Mass Spectrometer. Rapid Commun. Mass Spectrom. 2005, 19, 1657–1665.CrossRefGoogle Scholar
  49. 49.
    Devakumar, A.; Thompson, M. S.; Reilly, J. P. Fragmentation of Oligosaccharide Ions with 157 nm Vacuum Ultraviolet Light. Rapid Commun. Mass Spectrom. 2005, 19, 2313–2320.CrossRefGoogle Scholar
  50. 50.
    Devakumar, A.; Mechref, Y.; Kang, P.; Novotny, M. V.; Reilly, J. P. Laser-Induced Photofragmentation of Neutral and Acidic Glycans inside an Ion-Trap Mass Spectrometer. Rapid Commun. Mass Spectrom. 2007, 21, 1452–1460.CrossRefGoogle Scholar
  51. 51.
    Mechref, Y.; Novotny, M. V. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Acidic Glycoconjugates Facilitated by the Use of Spermine as a Co-matrix. J. Am. Soc. Mass Spectrom. 1998, 9, 1293–1302.CrossRefGoogle Scholar
  52. 52.
    Kang, P.; Mechref, Y.; Klouckova, I.; Novotny, M. V. Solid-Phase Permethylation of Glycans for Mass Spectrometric Analysis. Rapid Commun. Mass Spectrom. 2005, 19, 3421–3428.CrossRefGoogle Scholar
  53. 53.
    Devakumar, A.; O’Dell, D. K.; Walker, J. M.; Reilly, J. P. Structural Analysis of Leukotriene C4 isomers Using Collisional Activation and 157 nm Photodissociation. J. Am. Soc. Mass Spectrom. 2007, 19, 14–26.CrossRefGoogle Scholar
  54. 54.
    Payne, A. H.; Glish, G. L. Thermally Assisted Infrared Multiphoton Photodissociation in a Quadrupole Ion Trap. Anal. Chem. 2001, 73, 3542–3548.CrossRefGoogle Scholar
  55. 55.
    Wilson, J. J.; Brodbelt, J. S. MS/MS Simplification by 355 nm Ultraviolet Photodissociation of Chromophore-Derivatized Peptides in a Quadrupole Ion Trap. Anal. Chem. 2007, 79, 7883–7892.CrossRefGoogle Scholar
  56. 56.
    Dommon, B.; Costello, C. E. A Systematic Nomenclature for Carbohydrate Fragmentations in FAB-MS/MS Spectra of Glycoconjugates. Glycoconjugate J. 1988, 5, 397–409.CrossRefGoogle Scholar
  57. 57.
    Spina, E. S. L.; Romeo, D.; Impallomeni, G.; Garozzo, D.; Waidelich, D.; Glueckmann, M. New Fragmentation Mechanisms in Matrix-Assisted Laser Desorption/Ionization Time-of-Flight/Time-of-Flight Tandem Mass Spectrometry of Carbohydrates. Rapid Commun. Mass Spectrom. 2004, 18, 392–398.CrossRefGoogle Scholar
  58. 58.
    Stephens, E.; Maslen, S. L.; Green, L. G.; Williams, D. H. Fragmentation Characteristics of Neutral N-linked Glycans Using a MALDI-TOF/TOF Tandem Mass Spectrometer. Anal. Chem. 2004, 76, 2343–2354.CrossRefGoogle Scholar
  59. 59.
    Silva, M. L. C. D.; Stubbs, H. J.; Tamura, T.; Rice, K. G. 1H NMR Characterization of a Hen Ovalbumin Tyrosinamide N-Linked Oligosaccharide Library. Arch. Biochem. Biophys. 1995, 318, 465–475.CrossRefGoogle Scholar
  60. 60.
    Kuster, B.; Naven, T. J. P.; Harvey, D. J. Rapid Approach for Sequencing Neutral Oligosaccharides by Exoglycosidase Digestion and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. J. Mass Spectrom. 1996, 31, 1131–1140.CrossRefGoogle Scholar
  61. 61.
    North, S.; Birrell, H.; Camilleri, P. Postive and Negative Ion Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis of Complex Glycans Released from Hen Ovalbumin and Derivatized with 2-Aminoacridone. Rapid Commun. Mass Spectrom. 1998, 12, 349–356.CrossRefGoogle Scholar
  62. 62.
    Lattova, E.; Perreault, H.; Krokhin, O. Matrix-Assisted Laser Desorption/Ionization Tandem Mass Spectrometry and Post-Source Decay Fragmentation Study of Phenylhydrazones of N-Linked Oligosaccharides from Ovalbumin. J. Am. Soc. Mass Spectrom. 2004, 15, 725–735.CrossRefGoogle Scholar
  63. 63.
    Lattova, E.; Perreault, H. Profilling of N-Linked Oligosaccharides Using Phenylhydrazine Derivatization and Mass Spectrometry. J. Chromatogr. A. 2003, 1016, 71–87.CrossRefGoogle Scholar
  64. 64.
    Harvey, D. J. Fragmentation of Negative Ions from Carbohydrates: Part 3: Fragmentation of Hybrid and Complex N-Linked Glycans. J. Am. Soc. Mass Spectrom. 2005, 16, 647–659.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Arugadoss Devakumar
    • 1
  • Yehia Mechref
    • 1
  • Pilsoo Kang
    • 1
  • Milos V. Novotny
    • 1
  • James P. Reilly
    • 1
  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations