A novel serine phosphorylation site detected in the n-terminal domain of estrogen receptor isolated from human breast cancer cells

  • David J. Britton
  • Gary K. Scott
  • Birgit Schilling
  • Christian Atsriku
  • Jason M. Held
  • Bradford W. Gibson
  • Christopher C. Benz
  • Michael A. Baldwin
Articles

Abstract

Activated estrogen receptor (ERα) plays a critical role in breast cancer development and is a major target for drug treatment. Serine phosphorylation within the N-terminal domain (NTD) contributes to ERα activation and may also cause drug resistance. Previous biochemical identification of phosphorylated ERα residues was limited to protein artificially overexpressed in transfected cell lines. We report mass spectrometric methods that have allowed the identification of a new site within the NTD of ERα isolated from cultured human breast cancer cells. Immunoprecipitation, trypsin digestion, and analysis by nano-LC-ESI-MS/MS (Q-STAR, MDS Sciex) and vMALDI-MS n (Finnigan™ LTQ™, Thermo-Electron) identified peptides containing 8 of 14 serine residues within the NTD, one being partially phosphorylated Ser-167, known but not previously reported by MS. Chymotrypsin digestion revealed other known sites at Ser-102/104/106 and 118. Tandem methods developed for the peptide containing Ser-118 and the use of hypothesis-driven experiments—i.e., the assumption that an intact phosphopeptide showing no molecular ion might yield fragment ions including loss of phosphoric acid in vMALDI-MS/MS—allowed the identification of a novel site at Ser-154. Quantitation by selected reaction monitoring demonstrated 6-fold and 2.5-fold increases in Ser-154 phosphorylation in estradiol- and EGF-treated cells, respectively, compared to controls, confirmed by immunoblotting with a novel rabbit polyclonal antibody. Thus, the protein isolation and MS strategies described here can facilitate discovery of novel phosphorylation sites within low abundance, clinically important cancer targets like ERα, and may thereby contribute to our understanding of the role of phosphorylation in the development of breast cancer.

References

  1. 1.
    Joel P. B.; Traish A. M.; Lannigan D. A. Estradiol-Induced Phosphorylation of Serine 118 in the Estrogen Receptor Is Independent of p42/p44 Mitogen-Activated Protein Kinase. J. Biol. Chem. 1998, 273, 13317–13323.CrossRefGoogle Scholar
  2. 2.
    Likhite V. S.; Stossi F.; Kim K.; Katzenellenbogen B. S.; Katzenellenbogen J. A. Kinase-Specific Phosphorylation of the Estrogen Receptor Changes Receptor Interactions with Ligand, Deoxyribonucleic Acid, and Coregulators Associated with Alterations in Estrogen and Tamoxifen Activity. Mol. Endocrinol. 2006, 20, 3120–3132.CrossRefGoogle Scholar
  3. 3.
    McInerney E. M.; Katzenellenbogen B. S. Different Regions in Activation Function-1 of the Human Estrogen Receptor Required for Antiestrogen- and Estradiol-dependent Transcription Activation. J. Biol. Chem. 1996, 271, 24172–24178.CrossRefGoogle Scholar
  4. 4.
    Jensen E. V.; Jordan V. C. The Estrogen Receptor: A Model for Molecular Medicine. Clin. Cancer Res. 2003, 9, 1980–1989.Google Scholar
  5. 5.
    Shiau A. K.; Barstad D.; Loria P. M.; Cheng L.; Kushner P. J.; Agard D. A.; Greene G. L. The Structural Basis of Estrogen Receptor/Coactivator Recognition and the Antagonism of This Interaction by Tamoxifen. Cell 1998, 95, 927–937.CrossRefGoogle Scholar
  6. 6.
    Levenson A. S.; Jordan V. C. Selective Oestrogen Receptor Modulation: Molecular Pharmacology for the Millennium. Eur. J. Cancer 1999, 35, 1628–1639.CrossRefGoogle Scholar
  7. 7.
    Lannigan D. A. Estrogen Receptor Phosphorylation. Steroids 2003, 68, 1–9.CrossRefGoogle Scholar
  8. 8.
    Britton D. J.; Hutcheson I. R.; Knowlden J. M.; Barrow D.; Giles M.; McClelland R. A.; Gee J. M. W.; Nicholson R. I. Bidirectional Cross Talk between ERα and EGFR Signalling Pathways Regulates Tamoxifen-Resistant Growth. Breast Cancer Res. Treat. 2006, 96, 131–146.CrossRefGoogle Scholar
  9. 9.
    Lange C. A. Making Sense of Cross-Talk between Steroid Hormone Receptors and Intracellular Signaling Pathways: Who Will Have the Last Word? Mol. Endocrinol. 2004, 18, 269–278.CrossRefGoogle Scholar
  10. 10.
    Lavery D. N.; McEwan I. J. Structure and Function of Steroid Receptor AF1 Transactivation Domains: Induction of Active Conformations. Biochem. J. 2005, 391, 449–464.CrossRefGoogle Scholar
  11. 11.
    Gee J. M.; Robertson J. F.; Gutteridge E.; Ellis I. O.; Pinder S. E.; Rubini M.; Nicholson R. I. Epidermal Growth Factor Receptor/HER2/Insulin-like Growth Factor Receptor Signalling and Oestrogen Receptor Activity in Clinical Breast Cancer. Endocr. Relat. Cancer 2005, 12, S99-S111.CrossRefGoogle Scholar
  12. 12.
    Glaros S.; Atanaskova N.; Zhao C.; Skafar D. F.; Reddy K. B. Activation Function-1 Domain of Estrogen Receptor Regulates the Agonistic and Antagonistic Actions of Tamoxifen. Mol. Endocrinol. 2006, 20, 996–1008.CrossRefGoogle Scholar
  13. 13.
    Gutierrez M. C.; Detre S.; Johnston S.; Mohsin S. K.; Shou J.; Allred D. C.; Schiff R.; Osborne C. K.; Dowsett M. Molecular Changes in Tamoxifen-Resistant Breast Cancer: Relationship between Estrogen Receptor, HER-2, and p38 Mitogen-Activated Protein Kinase. J. Clin. Oncol. 2005, 23, 2469–2476.CrossRefGoogle Scholar
  14. 14.
    Sarwar N.; Jiang J.; Shousha S.; Coombes R. C.; Ali S. Investigation of Estrogen Receptor alpha Phosphorylation in Breast Cancer. J. Clin. Oncol. Meeting Abstr. 2006, 24, 20046.Google Scholar
  15. 15.
    Sarwar N.; Kim J. S.; Jiang J.; Peston D.; Shousha S.; Coombes R. C.; Ali S. Phosphorylation of Estrogen Receptor alpha at Serine 118 in Human Breast Tumours. J. Clin. Oncol. Meeting Abstr. 2005, 23, 9576.Google Scholar
  16. 16.
    Schiff R.; Massarweh S. A.; Shou J.; Bharwani L.; Mohsin S. K.; Osborne C. K. Cross-Talk between Estrogen Receptor and Growth Factor Pathways as a Molecular Target for Overcoming Endocrine Resistance. Clin. Cancer Res. 2004, 10, 331S-336S.CrossRefGoogle Scholar
  17. 17.
    Shou J.; Massarweh S.; Osborne C. K.; Wakeling A. E.; Ali S.; Weiss H.; Schiff R. Mechanisms of Tamoxifen Resistance: Increased Estrogen Receptor-HER2/neu Cross-Talk in ER/HER2-Positive Breast Cancer. J. Natl. Cancer Inst. 2004, 96, 926–935.CrossRefGoogle Scholar
  18. 18.
    Swaby R. F.; Huang M.; Ruth K. J.; Ross E. A.; Gong Y.; Page R. E.; Freedman G. M.; Goldstein L. J.; Di Cristofano A. Retrospective Analysis of Phosphorylation Status of the Estrogen Receptor in Patients with Early Stage Disease. J. Clin. Oncol. Meeting Abstr. 2007, 25, 21034.Google Scholar
  19. 19.
    Massarweh S.; Schiff R. Unraveling the Mechanisms of Endocrine Resistance in Breast Cancer: New Therapeutic Opportunities. Clin. Cancer Res. 2007, 13, 1950–1954.CrossRefGoogle Scholar
  20. 20.
    Benz C. C.; Scott G. K.; Sarup J. C.; Johnson R. M.; Tripathy D.; Coronado E.; Shepard H. M.; Osborne C. K. Estrogen-Dependent, Tamoxifen-Resistant Tumorigenic Growth of MCF-7 Cells Transfected with HER2/neu. Breast Cancer Res. Treat. 1992, 24, 85–95.CrossRefGoogle Scholar
  21. 21.
    Hutcheson I. R.; Knowlden J. M.; Madden T.-A.; Barrow D.; Gee J. M. W.; Wakeling A. E.; Nicholson R. I. Oestrogen Receptor-Mediated Modulation of the EGFR/MAPK Pathway in Tamoxifen-Resistant MCF-7 Cells. Breast Cancer Res. Treat. 2003, 81, 81–93.CrossRefGoogle Scholar
  22. 22.
    Joel P. B.; Smith J.; Sturgill T. W.; Fisher T. L.; Blenis J.; Lannigan D. A. pp90rsk1 Regulates Estrogen Receptor-Mediated Transcription through Phosphorylation of Ser-167. Mol. Cell. Biol. 1998, 18, 1978–1984.Google Scholar
  23. 23.
    Arnold S. F.; Obourn J. D.; Jaffe H.; Notides A. C. Phosphorylation of the Human Estrogen Receptor by Mitogen-Activated Protein Kinase and Casein Kinase II: Consequence on DNA Binding. J. Steroid Biochem. Mol. Biol. 1995, 55, 163–172.CrossRefGoogle Scholar
  24. 24.
    Clark D. E.; Poteet-Smith C. E.; Smith J. A.; Lannigan D. A. Rsk2 Allosterically Activates Estrogen Receptor α by Docking to the Hormone-Binding Domain. EMBO J. 2001, 20, 3484–3494.CrossRefGoogle Scholar
  25. 25.
    Tzeng D. Z.; Klinge C. M. Phosphorylation of Purified Estradiol-Liganded Estrogen Receptor by Casein Kinase II Increases Estrogen Response Element Binding but Does Not Alter Ligand Stability. Biochem. Biophys. Res. Commun. 1996, 223, 554–560.CrossRefGoogle Scholar
  26. 26.
    Joel P. B.; Traish A. M.; Lannigan D. A. Estradiol and Phorbol Ester Cause Phosphorylation of Serine 118 in the Human Estrogen Receptor. Mol. Endocrinol. 1995, 9, 1041–1052.Google Scholar
  27. 27.
    Le Goff P.; Montano M. M.; Schodin D. J.; Katzenellenbogen B. S. Phosphorylation of the Human Estrogen Receptor: Identification of Hormone-Regulated Sites and Examination of Their Influence on Transcriptional Activity. J. Biol. Chem. 1994, 269, 4458–4466.Google Scholar
  28. 28.
    Moran M. F.; Tong J.; Taylor P.; Ewing R. M. Emerging Applications for Phospho-Proteomics in Cancer Molecular Therapeutics. Biochim. Biophys. Acta 2006, 1766, 230–241.Google Scholar
  29. 29.
    Collins M. O.; Yu L.; Choudhary J. S. Analysis of Protein Phosphorylation on a Proteome-Scale. Proteomics 2007, 7, 2751–2768.CrossRefGoogle Scholar
  30. 30.
    Chang E. J.; Archambault V.; McLachlin D. T.; Krutchinsky A. N.; Chait B. T. Analysis of Protein Phosphorylation by Hypothesis-Driven Multiple-Stage Mass Spectrometry. Anal. Chem. 2004, 76, 4472–4483.CrossRefGoogle Scholar
  31. 31.
    Schilling B.; Gafni J.; Torcassi C.; Cong X.; Row R. H.; LaFevre-Bernt M. A.; Cusack M. P.; Ratovitski T.; Hirschhorn R.; Ross C. A.; Gibson B. W.; Ellerby L. M. Huntingtin Phosphorylation Sites Mapped by Mass Spectrometry: Modulation of Cleavage and Toxicity. J. Biol. Chem. 2006, 281, 23686–23697.CrossRefGoogle Scholar
  32. 32.
    Cao P.; Stults J. T. Phosphopeptide Analysis by On-line Immobilized Metal-Ion Affinity Chromatography-Capillary Electrophoresis-Electrospray Ionization Mass Spectrometry. J. Chromatogr. A 1999, 853, 225–235.CrossRefGoogle Scholar
  33. 33.
    Corthals G. L.; Aebersold R.; Goodlett D. R.; Burlingame A. L. Identification of Phosphorylation Sites Using Microimmobilized Metal Affinity Chromatography. In: Methods in Enzymology. San Diego, CA: Academic Press, 2005; pp 66–81.Google Scholar
  34. 34.
    Figeys D.; Gygi S. P.; Zhang Y.; Watts J.; Gu M.; Aebersold R. Electrophoresis Combined with Novel Mass Spectrometry Techniques: Powerful Tools for the Analysis of Proteins and Proteomes. Electrophoresis 1998, 19, 1811–1818.CrossRefGoogle Scholar
  35. 35.
    Neville D. C. A.; Rozanas C. R.; Price E. M.; Gruis D. B.; Verkman A. S.; Townsend R. R. Evidence for Phosphorylation of Serine 753 in CFTR Using a Novel Metal-Ion Affinity Resin and Matrix-Assisted Laser Desorption Mass Spectrometry. Protein Sci. 1997, 6, 2436–2445.CrossRefGoogle Scholar
  36. 36.
    Ballif B. A.; Villen J.; Beausoleil S. A.; Schwartz D.; Gygi S. P. Phosphoproteomic Analysis of the Developing Mouse Brain. Mol. Cell. Proteomics 2004, 3, 1093–1101.CrossRefGoogle Scholar
  37. 37.
    Beausoleil S. A.; Jedrychowski M.; Schwartz D.; Elias J. E.; Villen J.; Li J.; Cohn M. A.; Cantley L. C.; Gygi S. P. Large-Scale Characterization of HeLa Cell Nuclear Phosphoproteins. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12130–12135.CrossRefGoogle Scholar
  38. 38.
    Gronborg M.; Kristiansen T. Z.; Stensballe A.; Andersen J. S.; Ohara O.; Mann M.; Jensen O. N.; Pandey A. A Mass Spectrometry-Based Proteomic Approach for Identification of Serine/Threonine-Phosphorylated Proteins by Enrichment with Phospho-Specific Antibodies: Identification of a Novel Protein, Frigg, as a Protein Kinase A Substrate. Mol. Cell. Proteomics 2002, 1, 517–527.CrossRefGoogle Scholar
  39. 39.
    Perkins D. N.; Pappin D. J. C.; Creasy D. M.; Cottrell J. S. Probability-Based Protein Identification by Searching Sequence Database Using Mass Spectrometry Data. Electrophoresis 1999, 20, 3551–3567.CrossRefGoogle Scholar
  40. 40.
    Eng J. K.; McCormack A. L.; Yates J. R. An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database. J. Am. Soc. Mass Spectrom. 1994, 5, 976–989.CrossRefGoogle Scholar
  41. 41.
    Molina H.; Horn D. M.; Tang N.; Mathivanan S.; Pandey A. Global Proteomic Profiling of Phosphopeptides Using Electron Transfer Dissociation Tandem Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 2199–2204.CrossRefGoogle Scholar
  42. 42.
    Warnmark A.; Wikstrom A.; Wright A. P. H.; Gustafsson J.-A.; Hard T. The N-terminal Regions of Estrogen Receptor alpha and beta Are Unstructured In Vitro and Show Different TBP Binding Properties. J. Biol. Chem. 2001, 276, 45939–45944.CrossRefGoogle Scholar
  43. 43.
    Kumar R. A. J.; Thompson E. B. Transactivation Functions of the N-Terminal Domains of Nuclear Hormone Receptors: Protein Folding and Coactivator Interactions. Mol. Endocrinol. 2003, 17, 1–10.CrossRefGoogle Scholar
  44. 44.
    Campbell R. A.; Bhat-Nakshatri P.; Patel N. M.; Constantinidou D.; Ali S.; Nakshatri H. Phosphatidylinositol 3-Kinase/AKT-Mediated Activation of Estrogen Receptor alpha: A New Model for Anti-Estrogen Resistance. J. Biol. Chem. 2001, 276, 9817–9824.CrossRefGoogle Scholar
  45. 45.
    deGraffenried L. A.; Friedrichs W. E.; Fulcher L.; Fernandes G.; Silva J. M.; Peralba J. M.; Hidalgo M. Eicosapentaenoic Acid Restores Tamoxifen Sensitivity in Breast Cancer Cells with High Akt Activity. Ann. Oncol. 2003, 14, 1051–1056.CrossRefGoogle Scholar
  46. 46.
    Jordan V. C. Targeting Antihormone Resistance in Breast Cancer: A Simple Solution. Ann. Oncol. 2003, 14, 969–970.CrossRefGoogle Scholar
  47. 47.
    Sommer S.; Fuqua S. A. W. Estrogen Receptor and Breast Cancer. Semin. Cancer Biol. 2001, 11, 339–352.CrossRefGoogle Scholar
  48. 48.
    Arnold S. F.; Obourn J. D.; Jaffe H.; Notides A. C. Serine 167 Is the Major Estradiol-induced Phosphorylation Site on the Human Estrogen Receptor. Mol. Endocrinol. 1994, 8, 1208–1214.Google Scholar
  49. 49.
    Surti T. S.; Huang L.; Jan Y. N.; Jan L. Y.; Cooper E. C. Identification by Mass Spectrometry and Functional Characterization of Two Phosphorylation Sites of KCNQ2/KCNQ3 Channels. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 17828–17833.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • David J. Britton
    • 1
  • Gary K. Scott
    • 1
  • Birgit Schilling
    • 1
  • Christian Atsriku
    • 1
  • Jason M. Held
    • 1
  • Bradford W. Gibson
    • 1
    • 2
  • Christopher C. Benz
    • 1
    • 3
  • Michael A. Baldwin
    • 1
    • 2
  1. 1.Buck Institute for Age ResearchNovatoUSA
  2. 2.Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoUSA
  3. 3.Comprehensive Cancer Center and Division of Oncology-HematologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations