Advertisement

Is charge reduction in ESI really necessary?

  • Lloyd M. Smith
Critical Insight

Abstract

The technique of charge reduction electrospray mass spectrometry (CREMS), which can reduce the charge state complexity produced in electrospray ionization (ESI), is discussed.

References

  1. 1.
    Adachi, M.; Okuyama, K.; Kousaka, Y.; Moon, S. W.; Seinfeld, J. H. Facilitated Aerosol Sizing Using the Differential Mobility Analyzer. Aerosol Sci. Technol. 1990, 12, 225–239.CrossRefGoogle Scholar
  2. 2.
    Pitteri, S. J.; McLuckey, S. A. Recent Developments in the Ion/Ion Chemistry of High-Mass Multiply Charged Ions. Mass Spectrom. Rev. 2005, 24, 931–958.CrossRefGoogle Scholar
  3. 3.
    Scalf, M.; Westphall, M. S.; Smith, L. M. Charge Reduction Electrospray Mass Spectrometry. Anal. Chem. 2000, 72(1), 52–60.CrossRefGoogle Scholar
  4. 4.
    Scalf, M.; Westphall, M. S.; Krause, J.; Kaufman, S. L.; Smith, L. M. Controlling Charge States of Large Ions. Science. 1999, 283, 194–197.CrossRefGoogle Scholar
  5. 5.
    Ebeling, D. D.; Westphall, M. S.; Scalf, M.; Smith, L. M. Corona Discharge in Charge Reduction Electrospray Mass Spectrometry. Anal. Chem. 2000, 72(21), 5158–5161.CrossRefGoogle Scholar
  6. 6.
    Frey, B. L.; Lin, Y.; Westphall, M. S.; Smith, L. M. Controlling Gas-Phase Reactions for Efficient Charge Reduction Electrospray Mass Spectrometry of Intact Proteins. J. Am. Soc. Mass Spectrom. 2005, 5, 1876–1887.CrossRefGoogle Scholar
  7. 7.
    Karas, M.; Gluckmann, M.; Schafer, J. Ionization in Matrix-Assisted Laser Desorption/Ionization: Singly Charged Molecular Ions are the Lucky Survivors. J. Mass Spectrom. 2000, 35, 1–12.CrossRefGoogle Scholar
  8. 8.
    Wolters, D. A.; Washburn, M. P.; Yates, J. R. An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics. Anal. Chem. 2001, 73(23), 5683–5690.CrossRefGoogle Scholar
  9. 9.
    Wang, W. X.; Zhou, H. H.; Lin, H.; Roy, S.; Shaler, T. A.; Hill, L. R.; Norton, S.; Kumar, P.; Anderle, M.; Becker, C. H. Quantification of Proteins and Metabolites by Mass Spectrometry Without Isotopic Labeling or Spiked Standards. Anal. Chem. 2003, 75(18), 4818–4826.CrossRefGoogle Scholar
  10. 10.
    Gerber, S. A.; Rush, J.; Stemman, O.; Kirschner, M. W.; Gygi, S. P. Absolute Quantification of Proteins and Phosphoproteins from Cell Lysates by Tandem MS. Proc. Natl. Acad. Sci. U.S.A. 2003, 100(12), 6940–6945.CrossRefGoogle Scholar
  11. 11.
    Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R. Quantitative Analysis of Complex Protein Mixtures Using Isotope-Coded Affinity Tags. Nature Biotech. 1999, 17(10), 994–999.CrossRefGoogle Scholar
  12. 12.
    Claverie, J.-M. What if There are Only 30,000 Human Genes. Science. 2001, 291(5507), 1255–1257.CrossRefGoogle Scholar
  13. 13.
    Stamm, S.; Ben-Ari, S.; Rafalska, I.; Tang, Y. S.; Zhang, Z. Y.; Toiber, D.; Thanaraj, T. A.; Soreq, H. Function of Alternative Splicing. Gene. 2005, 344, 1–20.CrossRefGoogle Scholar
  14. 14.
    Garcia, B. A.; Pesavento, J. J.; Mizzen, C. A.; Kelleher, N. L. Pervasive Combinatorial Modification of Histone H3 in Human Cells. Nat. Methods. 2007, 4(6), 487–489.CrossRefGoogle Scholar
  15. 15.
    Phanstiel, D.; Brumbaugh, J.; Berggren, W. T.; Conard, K.; Feng, X.; Levenstein, M. E.; McAlister, G. C.; Thomson, J. A.; Coon, J. J. Mass Spectrometry Identifies and Quantifies 74 Unique Histone H4 Isoforms in Differentiating Human Embryonic Stem Cells. Proc. Nat. Acad. Sci. U.S.A., in press.Google Scholar
  16. 16.
    Taylor, P. J. Matrix Effects: The Achilles Heel of Quantitative High-Performance Liquid Chromatography-Electrospray-Tandem Mass Spectrometry. Clin. Biochem. 2005, 38(4), 328–334.CrossRefGoogle Scholar
  17. 17.
    Chen, X.; Westphall, M. S.; Smith, L. M. Mass Spectrometric Analysis of DNA Mixtures: Instrumental Effects Responsible for Decreased Sensitivity with Increasing Mass. Anal. Chem. 2003, 75(21), 5944–5952.CrossRefGoogle Scholar
  18. 18.
    McLuckey, S. A.; Reid, G. E.; Wells, J. M. Ion Parking During Ion/Ion Reactions in Electrodynamic Ion Traps. Anal. Chem. 2002, 74(2), 336–346.CrossRefGoogle Scholar
  19. 19.
    Marshall, A. G. Milestones in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Technique Development. Int. J. Mass Spectrom. 2000, 200, 331–356.CrossRefGoogle Scholar
  20. 20.
    Lamos, S. M.; Shortreed, M. R.; Frey, B. L.; Belshaw, P. J.; Smith, L. M. Relative Quantification of Carboxylic Acid Metabolites by Liquid Chromatography-Mass Spectrometry Using Isotopic Variants of Cholamine. Anal. Chem. 2007, 79(14), 5143–5149.CrossRefGoogle Scholar
  21. 21.
    Yang, W. C.; Adamec, J.; Regnier, F. E. Enhancement of the LC/MS Analysis of Fatty Acids Through Derivatization and Stable Isotope Coding. Anal. Chem. 2007, 79(14), 5150–5157.CrossRefGoogle Scholar
  22. 22.
    Krusemark, C. J.; Frey, B. L.; Belshaw, P. J.; Smith, L. M. Modifying the Charge State Distribution of Proteins in Electrospray Ionization Mass Spectrometry by Chemical Derivatization. 2007, unpublished.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of WisconsinMadisonUSA

Personalised recommendations