Structural characterization of monohydroxyeicosatetraenoic acids and dihydroxy- and trihydroxyeicosatrienoic acids by ESI-FTICR

  • Lijie Cui
  • Marilyn A. Isbell
  • Yuttana Chawengsub
  • John R. Falck
  • William B. Campbell
  • Kasem Nithipatikom
Articles

Abstract

The fragmentation characteristics of monohydroxyeicosatetraenoic acids and dihydroxy- and trihydroxyeicosatrienoic acids were investigated by electrospray ionization Fourier transform ion cyclotron resonance (FTICR) mass spectrometry using sustained off-resonance irradiation collision-induced dissociation (SORI-CID) and infrared multiphoton dissociation (IRMPD). The fragmentation patterns of these compounds were associated with the number and positions of the hydroxyl substituents. The fragmentation is more complicated with increasing number of the hydroxyl groups of the compounds. In general, the major carbon-carbon cleavage of [M−H] ions occurred at the α-position to the hydroxyl group, and the carbon-carbon cleavage occurred when there was a double-bond at the β-position to the hydroxyl group. SORI-CID and IRMPD produced some common fragmentation patterns; however, each technique provided some unique patterns that are useful for structural identification of these compounds. This study demonstrated the application of FTICR via the identification of regioisomers of trihydroxyeicosatrienoic acids in rabbit aorta samples.

References

  1. 1.
    Laude, D. A. Electrospray Ionization/Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications; John Wiley and Sons, Inc.: New York, 1997; pp 291–320.Google Scholar
  2. 2.
    Flora, J. W. Muddiman, D. C. Determination of the Relative Energies of Activation for the Dissociation of Aromatic Versus Aliphatic Phosphopeptides by ESI-FTICR-MS and IRMPD. J. Am. Soc. Mass Spectrom. 2004, 15, 121–127.CrossRefGoogle Scholar
  3. 3.
    Johnson, K. L. Ovsyannikova, I. G. Madden, B. J. Poland, G. A. Muddiman, D. C. Accurate Mass Precursor Ion Data and Tandem Mass Spectrometry Identify a Class I Human Leukocyte Antigen A*0201-Presented Peptide Originating from Vaccinia Virus. J. Am. Soc. Mass Spectrom. 2005, 16, 1812–1817.CrossRefGoogle Scholar
  4. 4.
    Park, Y. Lebrilla, C. B. Application of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry to Oligosaccharides. Mass Spectrom. Rev. 2005, 24, 232–264.CrossRefGoogle Scholar
  5. 5.
    Pasa-Tolic, L. Masselon, C. Barry, R. C. Shen, Y. Smith, R. D. Proteomic Analyses Using an Accurate Mass and Time Tag Strategy. Biotechniques 2004, 37, 621–636.Google Scholar
  6. 6.
    Page, J. S. Masselon, C. D. Smith, R. D. FTICR Mass Spectrometry for Qualitative and Quantitative Bioanalyses. Curr. Opin. Biotechnol. 2004, 15, 3–11.CrossRefGoogle Scholar
  7. 7.
    Reinhold, S. W. Vitzthum, H. Filbeck, T. Wolf, K. Lattas, C. Riegger, G. A. Kurtz, A. Kramer, B. K. Gene Expression of 5-, 12-, and 15-Lipoxygenases and Leukotriene Receptors Along the Rat Nephron. Am. J. Physiol. Renal Physiol. 2006, 290, F864-F872.CrossRefGoogle Scholar
  8. 8.
    Newby, C. S. Mallet, A. I. Rapid Simultaneous Analysis of Prostaglandin E2, 12-Hydroxyeicosatetraenoic Acid, and Arachidonic Acid Using High Performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1723–1727.CrossRefGoogle Scholar
  9. 9.
    Nithipatikom, K. Isbell, M. A. See, W. A. Campbell, W. B. Elevated 12- and 20-Hydroxyeicosatetraenoic Acid in Urine of Patients with Prostatic Diseases. Cancer Lett. 2005, 233, 219–225.CrossRefGoogle Scholar
  10. 10.
    Fretland, D. J. Anglin, C. P. Bremer, M. Isakson, P. Widomski, D. L. Paulson, S. K. Docter, S. H. Djuric, S. W. Penning, T. D. Yu, S. McKearn, J. P. Anti-inflammatory Effects of Second-Generation Leukotriene B4 Receptor Antagonist, SC-53228: Impact Upon leukotriene B4- and 12(R)-HETE-Mediated Events. Inflammation 1995, 19, 193–205.CrossRefGoogle Scholar
  11. 11.
    Suzuki, N. Hishinuma, T. Saga, T. Sato, J. Toyota, T. Goto, J. Mizugaki, M. Determination of Urinary 12(S)-Hydroxyeicosatetraenoic Acid by Liquid Chromatography-Tandem Mass Spectrometry with Column-Switching Technique: Sex Difference in Healthy Volunteers and Patients with. Diabetes mellitus. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003, 783, 383–389.CrossRefGoogle Scholar
  12. 12.
    Vanderhoek, J. Y. Role of the 15-Lipoxygenase in the Immune System. Ann. N.Y. Acad. Sci. 1988, 524, 240–251.CrossRefGoogle Scholar
  13. 13.
    Ternowitz, T. Fogh, K. Kragballe, K. 15-Hydroxyeicosatetraenoic acid (15-HETE) Specifically Inhibits LTB4-Induced Chemotaxis of Human Neutrophils. Skin Pharmacol. 1988, 1, 93–99.CrossRefGoogle Scholar
  14. 14.
    Grimminger, F. Mayser, P. Lipid Mediators, Free Fatty Acids, and Psoriasis. Prostaglandins Leukot. Essent. Fatty Acids 1995, 52, 1–15.CrossRefGoogle Scholar
  15. 15.
    Capdevila, J. H. Falck, J. R. Harris, R. C. Cytochrome P450 and Arachidonic Acid Bioactivation: Molecular and Functional Properties of the Arachidonate Mono-oxygenase. J. Lipid Res. 2000, 41, 163–181.Google Scholar
  16. 16.
    Fang, X. Kaduce, T. L. Weintraub, N. L. Harmon, S. Teesch, L. M. Morisseau, C. Thompson, D. A. Hammock, B. D. Spector, A. A. Pathways of Epoxyeicosatrienoic Acid Metabolism in endothelial cells: Implications for the Vascular Effects of Soluble Epoxide Hydrolase Inhibition. J. Biol. Chem. 2001, 276, 14867–14874.CrossRefGoogle Scholar
  17. 17.
    Fang, X. Weintraub, N. L. McCaw, R. B. Hu, S. Harmon, S. D. Rice, J. B. Hammock, B. D. Spector, A. A. Effect of Soluble Epoxide Hydrolase Inhibition on Epoxyeicosatrienoic Acid Metabolism in Human Blood Vessels. Am. J Physiol. Heart Circ. Physiol. 2004, 287, H2412-H2420.CrossRefGoogle Scholar
  18. 18.
    Hirt, D. L. Capdevila, J. Falck, J. R. Breyer, M. D. Jacobson, H. R. Cytochrome P450 Metabolites of Arachidonic Acid are Potent Inhibitors of Vasopressin Action on Rabbit Cortical Collecting duct. J. Clin. Invest. 1989, 84, 1805–1812.CrossRefGoogle Scholar
  19. 19.
    Fang, X. Moore, S. A. Stoll, L. L. Rich, G. Kaduce, T. L. Weintraub, N. L. Spector, A. A. 14,15-Epoxyeicosatrienoic Acid Inhibits Prostaglandin E2 Production in Vascular Smooth Muscle Cells. Am. J. Physiol. 1998, 275, H2113-H2121.Google Scholar
  20. 20.
    Campbell, W. B. Gebremedhin, D. Pratt, P. F. Harder, D. R. Identification of Epoxyeicosatrienoic Acids as Endothelium-Derived Hyperpolarizing Factors. Circ. Res. 1996, 78, 415–423.CrossRefGoogle Scholar
  21. 21.
    Campbell, W. B. Deeter, C. Gauthier, K. M. Ingraham, R. H. Falck, J. R. Li, P. L. 14,15-Dihydroxyeicosatrienoic Acid Relaxes Bovine Coronary Arteries by Activation of K(Ca) Channels. Am. J. Physiol. Heart Circ. Physiol. 2002, 282, H1656-H1664.Google Scholar
  22. 22.
    Li, P. L. Campbell, W. B. Epoxyeicosatrienoic Acids Activate K+ Channels in Coronary Smooth Muscle Through a Guanine Nucleotide Binding Protein. Circ. Res. 1997, 80, 877–884.CrossRefGoogle Scholar
  23. 23.
    Oltman, C. L. Weintraub, N. L. VanRollins, M. Dellsperger, K. C. Epoxyeicosatrienoic Acids and Dihydroxyeicosatrienoic Acids are Potent Vasodilators in the Canine Coronary Microcirculation. Circ. Res. 1998, 83, 932–939.CrossRefGoogle Scholar
  24. 24.
    Li, P. L. Chen, C. L. Bortell, R. Campbell, W. B. 11,12-Epoxyeicosatrienoic Acid Stimulates Endogenous Mono-ADP-Ribosylation in Bovine Coronary Arterial Smooth Muscle. Circ. Res. 1999, 85, 349–356.CrossRefGoogle Scholar
  25. 25.
    Fisslthaler, B. Popp, R. Kiss, L. Potente, M. Harder, D. R. Fleming, I. Busse, R. Cytochrome P450 2C is an EDHF Synthase in Coronary Arteries. Nature 1999, 401, 493–497.CrossRefGoogle Scholar
  26. 26.
    Fang, X. Hu, S. Xu, B. Snyder, G. D. Harmon, S. Yao, J. Liu, Y. Sangras, B. Falck, J. R. Weintraub, N. L. Spector, A. A. 14,15-Dihydroxyeicosatrienoic Acid Activates Peroxisome Proliferator-Activated Receptor-α. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H55-H63.CrossRefGoogle Scholar
  27. 27.
    Pfister, S. L. Spitzbarth, N. Edgemond, W. Campbell, W. B. Vasorelaxation by an Endothelium-Derived Metabolite of Arachidonic Acid. Am. J. Physiol. 1996, 270, H1021-H1030.Google Scholar
  28. 28.
    Pfister, S. L. Spitzbarth, N. Nithipatikom, K. Edgemond, W. S. Falck, J. R. Campbell, W. B. Identification of the 11,14,15- and 11,12, 15-Trihydroxyeicosatrienoic Acids as Endothelium-Derived Relaxing Factors of Rabbit Aorta. J. Biol. Chem. 1998, 273, 30879–30887.CrossRefGoogle Scholar
  29. 29.
    Campbell, W. B. Spitzbarth, N. Gauthier, K. M. Pfister, S. L. 11,12,15-Trihydroxyeicosatrienoic Acid Mediates ACh-Induced Relaxations in Rabbit Aorta. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H2648-H2656.Google Scholar
  30. 30.
    Gauthier, K. M. Spitzbarth, N. Edwards, E. M. Campbell, W. B. Apamin-Sensitive K+ Currents Mediate Arachidonic Acid-Induced Relaxations of Rabbit Aorta. Hypertension 2004, 43, 413–419.CrossRefGoogle Scholar
  31. 31.
    Zhang, D. X. Gauthier, K. M. Chawengsub, Y. Holmes, B. B. Campbell, W. B. Cyclo-oxygenase- and Lipoxygenase-Dependent Relaxation to Arachidonic Acid in Rabbit Small Mesenteric Arteries. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H302-H309.CrossRefGoogle Scholar
  32. 32.
    Kerwin, J. L. Torvik, J. J. Identification of Monohydroxy Fatty Acids by Electrospray Mass Spectrometry and Tandem Mass Spectrometry. Anal. Biochem. 1996, 237, 56–64.CrossRefGoogle Scholar
  33. 33.
    Nakamura, T. Bratton, D. L. Murphy, R. C. Analysis of Epoxyeicosatrienoic and Monohydroxyeicosatetraenoic Acids Esterified to Phospholipids in Human Red Blood Cells by Electrospray Tandem Mass Spectrometry. J. Mass Spectrom. 1997, 32, 888–896.CrossRefGoogle Scholar
  34. 34.
    Nakamura, T. Henson, P. M. Murphy, R. C. Occurrence of Oxidized Metabolites of Arachidonic Acid Esterified to Phospholipids in Murine Lung Tissue. Anal. Biochem. 1998, 262, 23–32.CrossRefGoogle Scholar
  35. 35.
    Sun, D. McDonnell, M. Chen, X. S. Lakkis, M. M. Li, H. Isaacs, S. N. Elsea, S. H. Patel, P. I. Funk, C. D. Human 12(R)-Lipoxygenase and the Mouse Ortholog: Molecular Cloning, Expression, and Gene Chromosomal Assignment. J. Biol. Chem. 1998, 273, 33540–33547.CrossRefGoogle Scholar
  36. 36.
    Wheelan, P. Zirrolli, J. A. Murphy, R. C. Low-Energy Fast Atom Bombardment Tandem Mass Spectrometry of Monohydroxy Substituted Unsaturated Fatty Acids. Biol. Mass Spectrom. 1993, 22, 465–473.CrossRefGoogle Scholar
  37. 37.
    Nithipatikom, K. DiCamelli, R. F. Kohler, S. Gumina, R. J. Falck, J. R. Campbell, W. B. Gross, G. J. Determination of Cytochrome P450 Metabolites of Arachidonic Acid in Coronary Venous Plasma During Ischemia and Reperfusion in Dogs. Anal. Biochem. 2001, 292, 115–124.CrossRefGoogle Scholar
  38. 38.
    MacPherson, J. C. Pavlovich, J. G. Jacobs, R. S. Biosynthesis of Arachidonic Acid Metabolites in Limulus polyphemus Amebocytes: Analysis by Liquid Chromatography-Electrospray Ionization Mass Spectrometry. Biochim. Biophys. Acta. 1996, 1303, 127–136.CrossRefGoogle Scholar
  39. 39.
    Bylund, J. Ericsson, J. Oliw, E. H. Analysis of Cytochrome P450 Metabolites of Arachidonic and Linoleic Acids by Liquid Chromatography-Mass Spectrometry with Ion Trap MS. Anal. Biochem. 1998, 265, 55–68.CrossRefGoogle Scholar
  40. 40.
    Zhang, J. H. Pearson, T. Matharoo-Ball, B. Ortori, C. A. Warren, A. Y. Khan, R. Barrett, D. A. Quantitative Profiling of Epoxyeicosatrienoic, Hydroxyeicosatetraenoic, and Dihydroxyeicosatetraenoic Acids in Human Intrauterine Tissues Using Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry. Anal. Biochem. 2007, 365, 40–51.CrossRefGoogle Scholar
  41. 41.
    Murphy, R. C. Barkley, R. M. Zemski Berry, K. Hankin, J. Harrison, K. Johnson, C. Krank, J. McAnoy, A. Uhlson, C. Zarini, S. Electrospray Ionization and Tandem Mass Spectrometry of Eicosanoids. Anal. Biochem. 2005, 346, 1–42.CrossRefGoogle Scholar
  42. 42.
    Falck, J. R. Barma, D. K. Mohapatra, S. Bandyopadhyay, A. Reddy, K. M. Qi, J. Campbell, W. B. Asymmetric Synthesis of the Stereoisomers of 11,12,15(S)-Trihydroxyeicosa-5(Z),8(Z),13(E)-Trienoic Acid, a Potent Endothelium-Derived Vasodilator. Bioorg. Med. Chem. Lett. 2004, 14, 4987–4990.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Lijie Cui
    • 1
  • Marilyn A. Isbell
    • 1
  • Yuttana Chawengsub
    • 1
  • John R. Falck
    • 2
  • William B. Campbell
    • 1
  • Kasem Nithipatikom
    • 1
  1. 1.Department of Pharmacology and ToxicologyMedical College of WisconsinMilwaukeeUSA
  2. 2.Departments of Biochemistry and PharmacologyUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations