Investigation of deprotonation reactions on globular and denatured proteins at atmospheric pressure by ESSI-MS

  • David Touboul
  • Matthias Conradin Jecklin
  • Renato Zenobi


Deprotonation reactions of multiply charged protein ions have been studied by introducing volatile reference bases at atmospheric pressure between an electrosonic spray ionization (ESSI) source and the inlet of a mass spectrometer. Apparent gas-phase basicities (GBapp) of different charge states of protein ions were determined by a bracketing approach. The results obtained depend on the conformation of the protein ions in the gas phase, which is linked to the type of buffer used (denaturing or nondenaturing). In nondenaturing buffer, the GBapp values are consistent with values predicted by the group of Kebarle using an electrostatic model (J. Mass Spectrom.2002,38, 618) based on the crystal structures, but taking into account salt bridges between ionized basic and acidic sites on the protein surface. A new basicity order for the most basic sites was therefore obtained. An excellent agreement with the charge residue model (CRM) is obtained when comparing the observed and calculated maximum charge state. Decharging of the proteins in the electrosonic spray process could be also useful in the study on noncovalent complexes, by decreasing repulsive electrostatic interactions. A unified mechanism of the ESSI process is proposed.


  1. 1.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246, 64–71.CrossRefGoogle Scholar
  2. 2.
    Gross, D. S.; Schnier, P. D.; Rodriguez-Cruz, S. E.; Fagerquist, C. K.; Williams, E. R. Conformations and Folding of Lysozyme Ions in Vacuo. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 3143–3148.CrossRefGoogle Scholar
  3. 3.
    Verkerk, U. H.; Kebarle, P. J. Ion-Ion and Ion-Molecule Reactions at the Surface of Proteins Produced by Nanospray: Information on the Number of Acidic Residues and Control of the Number of Ionized Acidic and Basic Residues. J. Am. Soc. Mass Spectrom. 2005, 16, 1325–1341.CrossRefGoogle Scholar
  4. 4.
    Williams, E. R. Proton Transfer Reactivity of Large Multiply Charged Ions. J. Mass Spectrom. 1996, 31, 831–842.CrossRefGoogle Scholar
  5. 5.
    Kaltashov, I. A.; Fabris, D.; Fenselau, C. C. Assessment of Gas-Phase Basicities of Protonated Peptides by the Kinetic Method. J. Phys. Chem. 1995, 99, 10046–10051.CrossRefGoogle Scholar
  6. 6.
    Kaltashov, I. A.; Fenselau, C. C. A Direct Comparison of “First” and “Second” Gas-Phase Basicities of the Octapeptide RPPGFSPF. J. Am. Chem. Soc. 1995, 117, 9906–9910.CrossRefGoogle Scholar
  7. 7.
    Gorman, G. S.; Speir, J. P.; Turner, C. A.; Jonathan Amster, I. Proton Affinities of the 20 Common α-Amino Acids. J. Am. Chem. Soc. 1992, 114, 3986–3988.CrossRefGoogle Scholar
  8. 8.
    Gorman, G. S.; Amster, I. J. Kinetic and Thermodynamic Considerations of the Bracketing Method: Entropy-Driven Proton-Transfer Reactions in a Fourier Transform Mass Spectrometer. Org. Mass Spectrom. 1993, 28, 1602–1607.CrossRefGoogle Scholar
  9. 9.
    Arshadi, M.; Yamdagni, R.; Kebarle, P. J. Hydration of the Halide Negative Ions in the Gas Phase. J. Phys. Chem. 1970, 74, 1475–1482.CrossRefGoogle Scholar
  10. 10.
    Cunningham, A. J.; Payzant, J. D.; Kebarle, P. J. A Kinetic Study of the Proton Hydrate H+(H2O)n Equilibria in the Gas Phase. J. Am. Chem. Soc. 1972, 94, 7627–7632.CrossRefGoogle Scholar
  11. 11.
    Winger, B. E.; Light-Wahl, K. J.; Smith, R. D. Gas-Phase Proton Transfer Reactions Involving Multiply Charged Cytochrome c Ions and Water Under Thermal Conditions. J. Am. Soc. Mass Spectrom. 1992, 3, 624–630.CrossRefGoogle Scholar
  12. 12.
    Ogorzalek-Loo, R. R.; Smith, R. D. Investigation of the Gas-Phase Structure of Electrosprayed Proteins Using Ion-Molecule Reactions. J. Am. Soc. Mass Spectrom. 1994, 5, 207–220.CrossRefGoogle Scholar
  13. 13.
    Cassady, C. J.; Wronka, J.; Kruppa, G. H.; Laukien, F. H. Deprotonation Reactions of Multiply Protonated Ubiquitin Ions. Rapid Commun. Mass Spectrom. 1994, 8, 394–400.CrossRefGoogle Scholar
  14. 14.
    Cassady, C. J. Gas-Phase Reactivity and Molecular Modeling Studies on Triply Protonated Dodecapeptides that Contain Four Basic Residues. J. Am. Soc. Mass Spectrom. 1998, 9, 716–723.CrossRefGoogle Scholar
  15. 15.
    Ewing, N. P.; Pallante, G. A.; Zhang, X.; Cassady, C. J. Gas-Phase Basicities for Ions from Bradykinin and Its Des-Arginine Analogues. J. Mass Spectrom. 2001, 36, 875–881.CrossRefGoogle Scholar
  16. 16.
    Badman, E. R.; Myung, S.; Clemmer, D. E. Evidence for Unfolding and Refolding of Gas-Phase cytochrome c Ions in a Paul Trap. J. Am. Soc. Mass Spectrom. 2005, 16, 1493–1497.CrossRefGoogle Scholar
  17. 17.
    Horn, D. M.; Breuker, K.; Frank, A. J.; McLafferty, F. W. Kinetic Intermediates in the Folding of Gaseous Protein Ions Characterized by Electron Capture Dissociation Mass Spectrometry. J. Am. Chem. Soc. 2001, 123, 9792–9799.CrossRefGoogle Scholar
  18. 18.
    Schnier, P. D.; Gross, D. S.; Williams, E. R. Electrostatic Forces and Dielectric Polarizability of Multiply Protonated Gas-Phase Cytochrome c Ions Probed by Ion/Molecule Chemistry. J. Am. Chem. Soc. 1995, 117, 6747–6757.CrossRefGoogle Scholar
  19. 19.
    Gronert, S. An ab Initio Study of Proton Transfers from Gas-Phase Dications: Complications in Kinetic Methods for Determining Acidities. J. Am. Chem. Soc. 1996, 118, 3525–3526.CrossRefGoogle Scholar
  20. 20.
    Gronert, S. Determining the Gas-Phase Properties and Reactivities of Multiply Charged Ions. J. Mass Spectrom. 1999, 34, 787–796.CrossRefGoogle Scholar
  21. 21.
    Gronert, S. Coulomb Repulsion in Multiply Charged Ions: A Computational Study of the Effective Dielectric Constants of Organic Spacer Groups. Int. J. Mass Spectrom. 1999, 185, 351–357.CrossRefGoogle Scholar
  22. 22.
    Peschke, M.; Blades, A.; Kebarle, P. Charged States of Proteins: Reactions of Doubly Protonated Alkyldiamines with NH(3): Solvation or Deprotonation. Extension of Two Proton Cases to Multiply Protonated Globular Proteins Observed in the Gas Phase. J. Am. Chem. Soc. 2002, 124, 11519–11530.CrossRefGoogle Scholar
  23. 23.
    Lemaire, D.; Marie, G.; Serani, L.; Laprévote, O. Stabilization of Gas-Phase Noncovalent Macromolecular Complexes in Electrospray Mass Spectrometry Using Aqueous Triethylammonium Bicarbonate Buffer. Anal. Chem. 2001, 73, 1699–1706.CrossRefGoogle Scholar
  24. 24.
    Verkerk, U. H.; Peschke, M.; Kebarle, P. Effect of Buffer Cations and of H3O+ on the Charge States of Native Proteins: Significance to determinations of stability constants of protein complexes. J. Mass Spectrom. 2003, 38, 618–631.CrossRefGoogle Scholar
  25. 25.
    Catalina, M. I.; Van den Heuvel, R. H. H.; Van Duijn, E.; Heck, A. J. R. Decharging of Globular Proteins and Protein Complexes in Electrospray. Chem. Eur. J. 2005, 11, 960–968.CrossRefGoogle Scholar
  26. 26.
    Takáts, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Electrosonic Spray Ionization: A Gentle Technique for Generating Folded Proteins and Protein Complexes in the Gas Phase and for Studying Ion-Molecule Reactions at Atmospheric Pressure. Anal. Chem. 2004, 76, 4050–4058.CrossRefGoogle Scholar
  27. 27.
    Touboul, D.; Jecklin, M. C.; Zenobi, R. Rapid and Precise Measurements of Gas-Phase Basicity of Peptides and Proteins at Atmospheric Pressure by Electrosonic Spray Ionization-Mass Spectrometry. J. Phys. Chem. 2007, 111, 11629–11631.CrossRefGoogle Scholar
  28. 28.
    Rayleigh, L. On the Equilibrium of Liquid Conducting Masses Charged with Electricity. Phil. Mag. 1882, 14, 184.CrossRefGoogle Scholar
  29. 29.
    de la Mora, J. F. Electrospray Ionization of Large Multiply Charged Species Proceeds via Dole’s Charged Residue Mechanism. Anal. Chim. Acta 2000, 406, 93–104.CrossRefGoogle Scholar
  30. 30.
    Jecklin, M. C.; Touboul, D.; Bovet, C.; Wortmann, A.; Zenobi, R. Which Electrospray-Based Ionization Method Best Reflects Protein-Ligand Interactions Found in Solution? A Comparison of ESI, nanoESI, and ESSI for the Determination of Dissociation Constants with Mass Spectrometry. J. Am. Soc. Mass Spectrom. in press.Google Scholar
  31. 31. Scholar
  32. 32.
    Bouchoux, G.; Salpin, J. Y.; Leblanc, D. A Relationship Between the Kinetics and Thermochemistry of Proton Transfer Reactions in the Gas Phase. Int. J. Mass Spectrom: Ion Processes 1996, 153, 37–48.CrossRefGoogle Scholar
  33. 33.
    Wu, J.; Lebrilla, C. B. Gas-Phase Basicities and Sites of Protonation of Glycine Oligomers (GLYn; n=1–5). J. Am. Chem. Soc. 1993, 115, 3270–3275.CrossRefGoogle Scholar
  34. 34.
    Wu, J.; Lebrilla, C. B. Intrinsic Basicity of Oligomeric Peptides that Contain Glycine, Alanine, and Valine—The Effects of the Alkyl Side Chain on Proton Transfer Reactions. J. Am. Soc. Mass Spectrom. 1995, 6, 91–101.CrossRefGoogle Scholar
  35. 35.
    Valentine, S. J.; Anderson, J. G.; Ellington, A. D.; Clemmer, D. E. Disulfide-Intact and -Reduced Lysozyme in the Gas Phase: Conformations and Pathways of Folding and Unfolding. J. Phys. Chem. B 1997, 101, 3891–3900.CrossRefGoogle Scholar
  36. 36.
    Thalassinos, K.; Slade, S. E.; Jennings, K. R.; Scrivens, J. H.; Giles, K.; Wildgoose, J.; Hoyes, J.; Bateman, R. H.; Bowers, M. T. Ion Mobility Mass Spectrometry of Proteins in a Modified Commercial Mass Spectrometer. Int. J. Mass Spectrom. 2004, 236, 55–63.CrossRefGoogle Scholar
  37. 37.
    Nesatyy, V. J.; Suter, M. J. F. On the Conformation-Dependent Neutralization Theory and Charging of Individual Proteins and Their Noncovalent Complexes in the Gas Phase. J. Mass Spectrom. 2004, 39, 93–97.CrossRefGoogle Scholar
  38. 38.
    Grandori, R. Origin of the Conformation Dependence of Protein Charge-State Distributions in Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2003, 38, 11–15.CrossRefGoogle Scholar
  39. 39.
    Samalikova, M.; Grandori, R. Role of Opposite Charges in Protein Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2003, 38, 941–947.CrossRefGoogle Scholar
  40. 40.
    Prakash, H.; Mazumdar, S. Direct Correlation of the Crystal Structure of Proteins with the Maximum Positive and Negative Charge States of Gaseous Protein Ions Produced by Electrospray Ionization. J. Am. Soc. Mass Spectrom. 2005, 16, 1409–1421.CrossRefGoogle Scholar
  41. 41.
    Wiseman, J. M.; Takáts, Z.; Gologan, B.; Davisson, V. J.; Cooks, R. G. Direct Characterization of Enzyme-Substrate Complexes by Using Electrosonic Spray Ionization Mass Spectrometry. Angew. Chem. Int. Ed. 2005, 44, 913–916.CrossRefGoogle Scholar
  42. 42.
    Felitsyn, N.; Peschke, M.; Kebarle, P. Origin and Number of Charges Observed on Multiply-Protonated Native Proteins Produced by ESI. Int. J. Mass Spectrom. 2002, 219, 39–62.CrossRefGoogle Scholar
  43. 43.
    Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. Naked Protein Conformations: Cytochrome c in the Gas Phase. J. Am. Chem. Soc. 1995, 117, 10141–10142.CrossRefGoogle Scholar
  44. 44.
    Šamalikova, M.; Matečko, I.; Müller, N.; Grandori, R. Interpreting Conformational Effects in Protein nano-ESI-MS Spectra. Anal. Bioanal. Chem. 2004, 378, 1112–1123.CrossRefGoogle Scholar
  45. 45.
    Koeniger, S. L.; Clemmer, D. E. Resolution and Structural Transitions of Elongated States of Ubiquitin. J. Am. Soc. Mass Spectrom. 2007, 18, 322–331.CrossRefGoogle Scholar
  46. 46.
    Iribarne, I. V.; Thomson, B. A. On the Evaporation of Small Ions from Charged Droplets. J. Chem. Phys. 1976, 64, 2287–2294.CrossRefGoogle Scholar
  47. 47.
    Cole, R. B. Some Tenets Pertaining to Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2000, 35, 763–772.CrossRefGoogle Scholar
  48. 48.
    Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B. Molecular Beams of Macroions. J. Chem. Phys. 1968, 49, 2240–2249.CrossRefGoogle Scholar
  49. 49.
    Mack, L. L.; Kralik, P.; Rheude, A.; Dole, M. Molecular Beams of Macroions: II. J. Chem. Phys. 1970, 52, 4977–4986.CrossRefGoogle Scholar
  50. 50.
    Smith, J. N.; Flagan, R. C.; Beauchamp, J. L. Droplet Evaporation and Discharge Dynamics in Electrospray Ionization. J. Phys. Chem. A 2002, 106, 9957–9967.CrossRefGoogle Scholar
  51. 51.
    Mao, D.; Babu, K. R.; Chen, Y. L.; Douglas, D. J. Conformations of Gas-Phase Lysozyme Ions Produced from Two Different Solution Conformations. Anal. Chem. 2003, 75, 1325–1330.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • David Touboul
    • 1
  • Matthias Conradin Jecklin
    • 1
  • Renato Zenobi
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesETH ZurichZürichSwitzerland

Personalised recommendations