Desorption electrospray ionization (DESI) mass spectrometry and tandem mass spectrometry (MS/MS) of phospholipids and sphingolipids: Ionization, adduct formation, and fragmentation

  • Nicholas E. Manicke
  • Justin M. Wiseman
  • Demian R. Ifa
  • R. Graham Cooks
Articles

Abstract

Desorption electrospray ionization (DESI) mass spectrometry was evaluated for the characterization of glycerophospholipid standards, including glycerophosphocholine (GPCho), glycerophosphoglycerol (GPGro), glycerophosphoethanolamine (GPEtn), glycerophosphoserine (GPSer), glycerophosphoinositol (GPIns), cardiolipin (CL), and sphingolipid standards, including sulfatides (ST) and sphingomyelin (SM). Of specific interest were the effects of surface and solvent composition on signal stability and intensity, along with the ions observed in the full scan mode and the fragmentations seen upon collisional activation for each of the above classes. These experiments were performed without the addition of matrix compounds to the sample and were conducted in the free ambient environment at atmospheric pressure. The compounds GPSer, GPGro, GPIns, ST, and CL were best analyzed in the negative ion mode while PE was ionized efficiently in both positive and negative ion modes. SM and GPCho, which typically generate more abundant ions in the positive ion mode, could be analyzed in the negative ion mode by the addition of anionic reagents such as acetate to the spray solvent. Full scan DESI mass spectra and tandem (MS/MS) spectra for this representative set of physiological phospho/sphingolipids are presented. Similarities with other ionization methods in terms of fragmentation behavior were strong, although ambient ionization of untreated samples is only available with DESI. The effect of surface and solvent properties on signal intensity and stability were determined by depositing standard compounds on several different surfaces and analyzing with various proportions of methanol in the aqueous spray. Analysis was extended to complex mixtures of phospholipids and sphingolipids by examining the total lipid extract of porcine brain and by direct analysis of rat brain cryotome sections. These types of mixture analyses and molecular imaging studies are likely to represent major areas of application of DESI.

References

  1. 1.
    Vance, D. E.; Vance, J. Biochemistry of Lipids, Lipoproteins, and Membranes, 3rd ed.; Elsevier: New York, 1996, pp. 28–36.Google Scholar
  2. 2.
    Crawford, C. G.; Plattner, R. D. Ammonia Chemical Ionization Mass-Spectrometry of Intact Diacyl Phosphatidylcholine. J. Lipid Res. 1983, 24, 456–460.Google Scholar
  3. 3.
    Bisseret, P.; Nakatani, Y.; Ourisson, G.; Hueber, R.; Teller, G. Ammonia Chemical Ionization Mass-Spectrometry of Lecithins on a Gold Support. Chem. Phys. Lipids 1983, 33, 383–392.CrossRefGoogle Scholar
  4. 4.
    Ayanoglu, E.; Wegmann, A.; Pilet, O.; Marbury, G. D.; Hass, J. R.; Djerassi, C. Mass-Spectrometry of Phospholipids: Some Applications of Desorption Chemical Ionization and Fast Atom Bombardment. J. Am. Chem. Soc. 1984, 106, 5246–5251.CrossRefGoogle Scholar
  5. 5.
    Jungalwala, F. B.; Evans, J. E.; McCluer, R. H. Compositional and Molecular-Species Analysis of Phospholipids by High-Performance Liquid-Chromatography Coupled with Chemical Ionization Mass-Spectrometry. J. Lipid Res. 1984, 25, 738–749.Google Scholar
  6. 6.
    Chilton, F. H.; Murphy, R. C. Fast-Atom-Bombardment Analysis of Arachidonic Acid-Containing Phosphatidylcholine Molecular-Species. Biomed. Environ. Mass Spectrom. 1986, 13, 71–76.CrossRefGoogle Scholar
  7. 7.
    Jensen, N. J.; Tomer, K. B.; Gross, M. L. FAB MS/MS for Phosphatidylinositol,-Glycerol, Phosphatidylethanolamine, and Other Complex Phospholipids. Lipids 1987, 22, 480–489.CrossRefGoogle Scholar
  8. 8.
    Kayganich, K. A.; Murphy, R. C. Fast-Atom-Bombardment Tandem Mass-Spectrometric Identification of Diacyl, Alkylacyl, and Alk-1-Enylacyl Molecular-Species of Glycerophosphoethanolamine in Human Polymorphonuclear Leukocytes. Anal. Chem. 1992, 64, 2965–2971.CrossRefGoogle Scholar
  9. 9.
    Murphy, R. C.; Harrison, K. A. Fast Atom Bombardment Mass Spectrometry of Phospholipids. Mass Spectrom. Rev. 1994, 13, 57–75.CrossRefGoogle Scholar
  10. 10.
    Duffin, K. L.; Henion, J. D.; Shieh, J. J. Electrospray and Tandem Mass-Spectrometric Characterization of Acylglycerol Mixtures That Are Dissolved in Nonpolar Solvents. Anal. Chem. 1991, 63, 1781–1788.CrossRefGoogle Scholar
  11. 11.
    Kerwin, J. L.; Tuininga, A. R.; Ericsson, L. H. Identification of Molecular-Species of Glycerophospholipids and Sphingomyelin Using Electrospray Mass-Spectrometry. J. Lipid Res. 1994, 35, 1102–1114.Google Scholar
  12. 12.
    Kim, H. Y.; Wang, T. C. L.; Ma, Y. C. Liquid-Chromatography Mass-Spectrometry of Phospholipids Using Electrospray-Ionization. Anal. Chem. 1994, 66, 3977–3982.CrossRefGoogle Scholar
  13. 13.
    Han, X. L.; Gross, R. W. Structural Determination of Picomole Amounts of Phospholipids Via Electrospray Ionization Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 1202–1210.CrossRefGoogle Scholar
  14. 14.
    Cheng, C. F.; Gross, M. L. Complete Structural Elucidation of Triacylglycerols by Tandem Sector Mass Spectrometry. Anal. Chem. 1998, 70, 4417–4426.CrossRefGoogle Scholar
  15. 15.
    Hsu, F. F.; Turk, J. Structural Characterization of Triacylglycerols as Lithiated Adducts by Electrospray Ionization Mass Spectrometry Using Low-Energy Collisionally Activated Dissociation on a Triple Stage Quadrupole Instrument. J. Am. Soc. Mass Spectrom. 1999, 10, 587–599.CrossRefGoogle Scholar
  16. 16.
    Ivanova, P. T.; Cerda, B. A.; Horn, D. M.; Cohen, J. S.; McLafferty, F. W.; Brown, H. A. Electrospray Ionization Mass Spectrometry Analysis of Changes in Phospholipids in Rbl-2h3 Mastocytoma Cells During Degranulation. Proc. Nat. Acad. Sci. U.S.A. 2001, 98, 7152–7157.CrossRefGoogle Scholar
  17. 17.
    Berry, K. A. Z.; Murphy, R. C. Electrospray Ionization Tandem Mass Spectrometry of Glycerophosphoethanolamine Plasmalogen Phospholipids. J. Am. Soc. Mass Spectrom. 2004, 15, 1499–1508.CrossRefGoogle Scholar
  18. 18.
    Harvey, D. J. Matrix-Assisted Laser-Desorption Ionization Mass-Spectrometry of Phospholipids. J. Mass Spectrom. 1995, 30, 1333–1346.CrossRefGoogle Scholar
  19. 19.
    Marto, J. A.; White, F. M.; Seldomridge, S.; Marshall, A. G. Structural Characterization of Phospholipids by Matrix-Assisted Laser-Desorption Ionization Fourier-Transform Ion-Cyclotron Resonance Mass Spectrometry. Anal. Chem. 1995, 67, 3979–3984.CrossRefGoogle Scholar
  20. 20.
    Ayorinde, F. O.; Eribo, B. E.; Balan, K. V.; Johnson, J. H.; Wan, L. W. Determination of Major Triacylglycerol Components of Polyunsaturated Specialty Oils Using Matrix-Assisted Laser Desorption Ionization Time-of-Fight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 937–942.CrossRefGoogle Scholar
  21. 21.
    Schiller, J.; Arnhold, J.; Benard, S.; Muller, M.; Reichl, S.; Arnold, K. Lipid Analysis by Matrix-Assisted Laser Desorption and Ionization Mass Spectrometry: A Methodological Approach. Anal. Biochem. 1999, 267, 46–56.CrossRefGoogle Scholar
  22. 22.
    Benard, S.; Arnhold, J.; Lehnert, M.; Schiller, J.; Arnold, K. Experiments Towards Quantification of Saturated and Polyunsaturated Diacylglycerols by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry. Chem. Phys. Lipids 1999, 100, 115–125.CrossRefGoogle Scholar
  23. 23.
    van den Brink, O. F.; Boon, J. J.; O’Connor, P. B.; Duursma, M. C.; Heeren, R. M. A. Matrix-Assisted Laser Desorption/Ionization Fourier Transform Mass Spectrometric Analysis of Oxygenated Triglycerides and Phosphatidylcholines in Egg Tempera Paint Dosimeters Used for Environmental Monitoring of Museum Display Conditions. J. Mass Spectrom. 2001, 36, 479–492.CrossRefGoogle Scholar
  24. 24.
    Zabrouskov, V.; Al-Saad, K. A.; Siems, W. F.; Hill, H. H.; Knowles, N. R. Analysis of Plant Phosphatidylcholines by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 935–940.CrossRefGoogle Scholar
  25. 25.
    Murphy, R. C.; Fiedler, J.; Hevko, J. Analysis of Nonvolatile Lipids by Mass Spectrometry. Chem. Rev. 2001, 101, 479–526.CrossRefGoogle Scholar
  26. 26.
    Rujoi, M.; Estrada, R.; Yappert, M. C. In Situ MALDI-TOF MS Regional Analysis of Neutral Phospholipids in Lens Tissue. Anal. Chem. 2004, 76, 1657–1663.CrossRefGoogle Scholar
  27. 27.
    Al-Saad, K. A.; Siems, W. F.; Hill, H. H.; Zabrouskov, V.; Knowles, N. R. Structural Analysis of Phosphatidylcholines by Post-Source Decay Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2003, 14, 373–382.CrossRefGoogle Scholar
  28. 28.
    Song,Y.; Talaty, N.; Tao, W. A.; Pan, Z.; Cooks, R. G. Rapid Ambient Mass Spectrometric Profiling of Intact, Untreated Bacteria Using Desorption Electrospray Ionization. Chem. Commun. 2006, 61–63.Google Scholar
  29. 29.
    Wiseman, J. M.; Puolitaival, S. M.; Takats, Z.; Cooks, R. G.; Caprioli, R. Mass Spectrometric Profiling of Intact Biological Tissue by Using Desorption Electrospray Ionization. Angew. Chem. Int. Ed. 2005, 44, 7094–7097.CrossRefGoogle Scholar
  30. 30.
    Wiseman, J. M.; Ifa, D. R.; Song, Q.; Cooks, R. G. Tissue Imaging at Atmospheric Pressure Using Desorption Electrospray Ionization (DESI) Mass Spectrometry. Angew. Chem. Int. Ed. 2006, 45, 7188–7192.CrossRefGoogle Scholar
  31. 31.
    Ifa, D. R.; Wiseman, J. M.; Song, Q. Y.; Cooks, R. G. Development of Capabilities for Imaging Mass Spectrometry under Ambient Conditions with Desorption Electrospray Ionization (DESI). Int. J. Mass Spectrom. 2007, 259, 8–15.CrossRefGoogle Scholar
  32. 32.
    Costa, A. B.; Cooks, R. G. Simulation of Atmospheric Transport and Droplet Thin-Film Collisions in Desorption Electrospray Ionization. Chem. Commun. 2007, 3915–3917.Google Scholar
  33. 33.
    Ifa, D. R.; Gumaelius, L.; Eberlin, L. S.; Manicke, N. E.; Cooks, R. G. Forensic Analysis of Inks by Imaging Desorption Electrospray Ionization (DESI) Mass Spectrometry. Analyst 2007, 132, 461–467.CrossRefGoogle Scholar
  34. 34.
    Cech, N. B.; Enke, C. G. Practical Implications of Some Recent Studies in Electrospray Ionization Fundamentals. Mass Spectrom. Rev. 2001, 20, 362–387.CrossRefGoogle Scholar
  35. 35.
    Ifa, D. R.; Manicke, N. E.; Rusine, A. L.; Cooks, R. G. Quantitative Analysis of Small Molecules by Desorption Electrospray Ionization Mass Spectrometry from Polytetrafluoroethylene Surfaces, Rapid Commun. Mass Spectrom. In press. doi:10.1002/rcm.3377.Google Scholar
  36. 36.
    Jensen, N. J.; Gross, M. L. A Comparison of Mass-Spectrometry Methods for Structural Determination and Analysis of Phospholipids. Mass Spectrom. Rev. 1988, 7, 41–69.CrossRefGoogle Scholar
  37. 37.
    Hsu, F. F.; Bohrer, A.; Turk, J. Formation of Lithiated Adducts of Glycerophosphocholine Lipids Facilitates Their Identification by Electrospray Ionization Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1998, 9, 516–526.CrossRefGoogle Scholar
  38. 38.
    Larsen, A.; Uran, S.; Jacobsen, P. K.; Skotland, T. Collision-Induced Dissociation of Glycero Phospholipids Using Electrospray Ion-Trap Mass Spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 2393–2398.CrossRefGoogle Scholar
  39. 39.
    Han, X. L.; Gross, R. W. Electrospray-Ionization Mass Spectroscopic Analysis of Human Erythrocyte Plasma-Membrane Phospholipids. Proc. Nat. Acad. Sci. U.S.A. 1994, 91, 10635–10639.CrossRefGoogle Scholar
  40. 40.
    Hsu, F. F.; Turk, J. Electrospray Ionization/Tandem Quadrupole Mass Spectrometric Studies on Phosphatidylcholines: The Fragmentation Processes. J. Am. Soc. Mass Spectrom. 2003, 14, 352–363.CrossRefGoogle Scholar
  41. 41.
    Ho, Y. P.; Huang, E. A Novel Structural Analysis of Glycerophosphocholines as TFA/K(+) Adducts by Electrospray Ionization Ion Trap Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2002, 16, 1582–1589.CrossRefGoogle Scholar
  42. 42.
    Hsu, F. F.; Turk, J. Charge-Driven Fragmentation Processes in Diacyl Glycerophosphatidic Acids Upon Low-Energy Collisional Activation: A Mechanistic Proposal. J. Am. Soc. Mass Spectrom. 2000, 11, 797–803.CrossRefGoogle Scholar
  43. 43.
    Vernooij, E. A. A. M.; Brouwers, J. F. H. M.; Kettenes-van den Bosch, J. J.; Crommelin, D. J. A. RP-HPLC/ESI MS Determination of Acyl Chain Positions in Phospholipids. J. Sep. Sci. 2002, 25, 285–289.CrossRefGoogle Scholar
  44. 44.
    Huang, Z.; Gage, D. A.; Sweeley, C. C. Characterization of Diacylglycerylphosphocholine Molecular Species by FAB-CAD-MS/MS: A General Method Not Sensitive to the Nature of the Fatty Acyl Groups. J. Am. Soc. Mass Spectrom. 1992, 3, 71–78.CrossRefGoogle Scholar
  45. 45.
    Hvattum, E.; Hagelin, G.; Larsen, A. Study of Mechanisms Involved in the Collision-Induced Dissociation of Carboxylate Anions from Glycerophospholipids Using Negative Ion Electrospray Tandem Quadrupole Mass Spectrometry. Rapid Commun. Mass Spectrom. 1998, 12, 1405–1409.CrossRefGoogle Scholar
  46. 46.
    Harrison, K. A.; Murphy, J. P. Negative Electrospray Ionization of Glycerophosphocholine Lipids: Formation of [M − 15] Ions Occurs Via Collisional Decomposition of Adduct Anions. J. Mass Spectrom. 1995, 30, 1772–1773.CrossRefGoogle Scholar
  47. 47.
    Coetzee, T.; Fujita, N.; Dupree, J.; Shi, R.; Blight, A.; Suzuki, K.; Suzuki, K.; Popko, B. Myelination in the Absence of Galactocerebroside and Sulfatide: Normal Structure with Function and Regional Instability. Cell 1996, 86, 209–219.CrossRefGoogle Scholar
  48. 48.
    Hsu, F. F.; Turk, J. Studies on Sulfatides by Quadrupole Ion Trap Mass Spectrometer with Electrospray Ionization: Structural Characterization and Fragmentation Processes That Include an Unusual Internal Galactose Residue Loss and the Classical Charge-Remote Fragmentation. J. Am. Soc. Mass Spectrom. 2004, 15, 536–546.CrossRefGoogle Scholar
  49. 49.
    Chen, S. Tandem Mass Spectrometric Approach for Determining Structure of Molecular Species of Aminophospholipids. Lipids 1997, 32, 85–100.CrossRefGoogle Scholar
  50. 50.
    Hsu, F. F.; Turk, J. Characterization of Phosphatidylinositol, Phosphatidylinositol-4-Phosphate, and Phosphatidylinositol-4,5-Bisphosphate by Electrospray Ionization Tandem Mass Spectrometry: A Mechanistic Study. J. Am. Soc. Mass Spectrom. 2000, 11, 986–999.CrossRefGoogle Scholar
  51. 51.
    Hsu, F. F.; Turk, J. Structural Characterization of Cardiolipin by Tandem Quadrupole and Multiple Quadrupole Ion-Trap Mass Spectrometry with Electrospray Ionization. J. Am. Soc. Mass Spectrom. 2005, 16, 491–504.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Nicholas E. Manicke
    • 1
  • Justin M. Wiseman
    • 1
  • Demian R. Ifa
    • 1
  • R. Graham Cooks
    • 1
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations