The distribution of ion acceptance in atmospheric pressure ion sources: Spatially resolved APLI measurements

  • Matthias Lorenz
  • Ralf Schiewek
  • Klaus J. Brockmann
  • Oliver J. Schmitz
  • Siegmar Gäb
  • Thorsten Benter
Articles

Abstract

It is demonstrated that spatially resolved mass selected analysis using atmospheric pressure laser ionization mass spectrometry (APLI MS) represents a new powerful tool for mechanistic studies of ion-molecule chemistry occurring within atmospheric pressure (AP) ion sources as well as for evaluation and optimization of ion source performance. A focused low-energy UV laser beam is positioned computer controlled orthogonally on a two-dimensional grid in the ion source enclosure. Resonance enhanced multiphoton ionization (REMPI) of selected analytes occurs only within the confined volume of the laser beam. Depending on the experimental conditions and the reactivity of the primary photo-generated ions, specific signal patterns become visible after data treatment, as visualized in, e.g., contour or pseudo-color plots. The resulting spatial dependence of sensitivity is defined in this context as the distribution of ion acceptance (DIA) of the source/analyzer combination. This approach provides a much more detailed analysis of the diverse processes occurring in AP ion sources compared with conventional bulk signal response measurements.

References

  1. 1.
    Niessen, W. M. A. Progress in Liquid Chromatography-Mass Spectrometry Instrumentation and Its Impact on High-Throughput Screening. J. Chromatogr. A 2003, 1000, 413–436.CrossRefGoogle Scholar
  2. 2.
    Niessen, W. M. A. LC-MS in Quantitative Analysis. Rev. Anal. Chem. 2000, 19, 289–301.CrossRefGoogle Scholar
  3. 3.
    Niessen, W. M. A. State-of-the-Art in Liquid Chromatography-Mass Spectrometry. J. Chromatogr. A 1999, 856, 179–197.CrossRefGoogle Scholar
  4. 4.
    Bos, S. J.; van Leeuwen, S. M.; Karst, U. From Fundamentals to Applications: Recent Developments in Atmospheric Pressure Photoionization Mass Spectrometry. Anal. Bioanal. Chem. 2006, 384, 85–99.CrossRefGoogle Scholar
  5. 5.
    Van Berkel, G. J. An Overview of Some Recent Developments in Ionization Methods for Mass Spectrometry. Eur. J. Mass Spectrom. 2003, 9, 539–562.CrossRefGoogle Scholar
  6. 6.
    Raffaelli, A.; Saba, A. Atmospheric Pressure Photoionization Mass Spectrometry. Mass Spectrom. Rev. 2003, 22, 318–331.CrossRefGoogle Scholar
  7. 7.
    Constapel, M.; Schellenträger, M.; Schmitz, O. J.; Gäb, S.; Brockmann, K. J.; Giese, R.; Benter, T. Atmospheric Pressure Laser Ionization: A Novel Ionization Method for Liquid Chromatography/Mass Spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 326–336.CrossRefGoogle Scholar
  8. 8.
    Droste, S.; Schellenträger, M.; Constapel, M.; Gäb, S.; Lorenz, M.; Brockmann, K. J.; Benter, T.; Lubda, D.; Schmitz, O. J. A Silica-Based Monolithic Column in Capillary HPLC and CEC Coupled with ESI-MS or Electrospray-Atmospheric-Pressure Laser Ionization-MS. Electrophoresis 2005, 26, 4098–4103.CrossRefGoogle Scholar
  9. 9.
    Benter, T.; Schmitz, O. J. Atmospheric Pressure Laser Ionization. In Advances in LC-MS Instrumentation: Journal of Chromatography Library 72; Cappiello, A. Ed.; Elsevier: Amsterdam, The Netherlands, 2007; p 89.Google Scholar
  10. 10.
    Benter, T. Atmospheric Pressure Laser Ionization. In The Encyclopedia of Mass Spectrometry 1st ed.; Gross, M. L., Caprioli, R. N. Eds., Elsevier: Oxford, U.K., 2007; p 251.Google Scholar
  11. 11.
    Schiewek, R.; Schellentrager, M.; Monnikes, R.; Lorenz, M.; Giese, R.; Brockmann, K. J.; Gäb, S.; Benter, T.; Schmitz, O. J. Ultrasensitive Determination of Polycyclic Aaromatic Compounds with Atmospheric-Pressure Laser Ionization as an Interface for GC/MS. Anal. Chem. 2007, 79, 4135–4140.CrossRefGoogle Scholar
  12. 12.
    Syage, J. A.; Hanning-Lee, M. A.; Hanold, K. A. A Man-Portable, Photoionization Time-of-Flight Mass Spectrometer. Field Anal. Chem. Technol. 2000, 4, 204–215.CrossRefGoogle Scholar
  13. 13.
    Syage, J. A.; Evans, M. D.; Hanold, K. A. Photoionization Mass Spectrometry. Am. Lab. 2000, 32, 24–29.Google Scholar
  14. 14.
    Robb, D. B.; Blades, M. W. Effects of Solvent Flow, Dopant Flow, and Lamp Current on Dopant-Assisted Atmospheric Pressure Photoionization (DA-APPI) for LC-MS Ionization via Proton Transfer. J. Am. Soc. Mass Spectrom. 2005, 16, 1275–1290.CrossRefGoogle Scholar
  15. 15.
    Robb, D. B.; Covey, T. R.; Bruins, A. P. Atmospheric Pressure Photoionization: An Ionization Method for Liquid Chromatography-Mass Spectrometry. Anal. Chem. 2000, 72, 3653–3659.CrossRefGoogle Scholar
  16. 16.
    Robb, D. B.; Blades, M. W. Factors Affecting Primary Ionization in Dopant-Assisted Atmospheric Pressure Photoionization (DA-APPI) for LC/MS. J. Am. Soc. Mass Spectrom. 2006, 17, 130–138.CrossRefGoogle Scholar
  17. 17.
    Kauppila, T. J.; Bruins, A. P.; Kostiainen, R. Effect of the Solvent Flow Rate on the Ionization Efficiency in Atmospheric Pressure Photoionization-Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2005, 16, 1399–1407.CrossRefGoogle Scholar
  18. 18.
    Syage, J. A. Mechanism of [M + H]+ Formation in Photoionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 1521–1533.CrossRefGoogle Scholar
  19. 19.
    Kauppila, T. J.; Kotiaho, T.; Kostiainen, R.; Bruins, A. P. Negative Ion-Atmospheric Pressure Photoionization-Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 203–211.CrossRefGoogle Scholar
  20. 20.
    Kauppila, T. J.; Kostiainen, R.; Bruins, A. P. Anisole, a New Dopant for Atmospheric Pressure Photoionization Mass Spectrometry of Low Proton Affinity, Low Ionization Energy Compounds. Rapid Commun. Mass Spectrom. 2004, 18, 808–815.CrossRefGoogle Scholar
  21. 21.
    Tubaro, M.; Marotta, E.; Seraglia, R.; Traldi, P. Atmospheric Pressure Photoionization Mechanisms. 2: The Case of Benzene and Toluene. Rapid Commun. Mass Spectrom. 2003, 17, 2423–2429.CrossRefGoogle Scholar
  22. 22.
    Marotta, E.; Seraglia, R.; Fabris, F.; Traldi, P. Atmospheric Pressure Photoionization Mechanisms. 1: The Case of Acetonitrile. Int. J. Mass Spectrom. 2003, 228, 841–849.CrossRefGoogle Scholar
  23. 23.
    Lorenz, M. Brockmann, K. J. Schiewek, R. Constapel, M. Schmitz, O. J. Gäb, S. Benter, T. On the Ionization Mechanisms in APPI versus APLI. Proceedings of the 54th ASMS Conference on Mass Spectrometry and Allied Topics; Seattle, WA, May, 2006.Google Scholar
  24. 24.
    Chernushevich, I. V.; Loboda, A. V.; Thomson, B. A. An Introduction to Quadrupole-Time-of-Flight Mass Spectrometry. J. Mass Spectrom. 2001, 36, 849–865.CrossRefGoogle Scholar
  25. 25.
    Boesl, U. Special Feature: Tutorial—Laser Mass Spectrometry for Environmental and Industrial Chemical Trace Analysis. J. Mass Spectrom. 2000, 35, 289–304.CrossRefGoogle Scholar
  26. 26.
    Pfab, J. Laser-Induced Fluorescence and Ionization Spectroscopy of Gas Phase Species. In Spectroscopy in Environmental Science; Clark, R. J. H.; Hester, R. E., Eds.; John Wiley and Sons: New York, 1995; p 149.Google Scholar
  27. 27.
    Ashfold, M. N. R.; Howe, J. D. Multiphoton Spectroscopy of Molecular Species. Annu. Rev. Phys. Chem. 1994, 45, 57–82.CrossRefGoogle Scholar
  28. 28.
    Muehlberger, F.; Zimmermann, R.; Kettrup, A. A Mobile Mass Spectrometer for Comprehensive On-Line Analysis of Trace and Bulk Components of Complex Gas Mixtures: Parallel Application of the Laser-Based Ionization Methods VUV Single-Photon Ionization, Resonant Multiphoton Ionization, and Laser-Induced Electron Impact Ionization. Anal. Chem. 2001, 73, 3590–3604.CrossRefGoogle Scholar
  29. 29.
    Cao, L.; Muehlberger, F.; Adam, T.; Streibel, T.; Wang, H. Z.; Kettrup, A.; Zimmermann, R. Resonance-Enhanced Multiphoton Ionization and VUV-Single Photon Ionization as Soft and Selective Ionization Methods for On-Line Time-of-Flight Mass Spectrometry: Investigation of the Pyrolysis of Typical Organic Contaminants in the Steel Recycling Process. Anal. Chem. 2003, 75, 5639–5645.CrossRefGoogle Scholar
  30. 30.
    Burton, G. R.; Chan, W. F.; Cooper, G.; Brion, C. E. Absolute Oscillator-Strengths for Photoabsorption (6-360 eV) and Ionic Photofragmentation (10-80 eV) of Methanol. Chem. Phys. 1992, 167, 349–367.CrossRefGoogle Scholar
  31. 31.
    Burton, G. R.; Chan, W. F.; Cooper, G.; Brion, C. E. The Electronic Absorption Spectrum of NH3 in the Valence Shell Discrete and Continuum Regions—Absolute Oscillator-Strengths for Photoabsorption (5–200 eV). Chem. Phys. 1993, 177, 217–231.CrossRefGoogle Scholar
  32. 32.
    Chan, W. F.; Cooper, G.; Brion, C. E. The Electronic-Spectrum of Water in the Discrete and Continuum Regions—Absolute Optical Oscillator-Strengths for Photoabsorption (6–200 eV). Chem. Phys. 1993, 178, 387–400.CrossRefGoogle Scholar
  33. 33.
    Cooper, G.; Anderson, J. E.; Brion, C. E. Absolute Photoabsorption and Photoionization of Formaldehyde in the VUV and Soft X-Ray Regions (3–200 eV). Chem. Phys. 1996, 209, 61–77.CrossRefGoogle Scholar
  34. 34.
    Eden, S.; Limao-Vieira, P.; Kendall, P.; Mason, N. J.; Hoffmann, S. V.; Spyrou, S. M. High Resolution Photoabsorption Studies of Acrylonitrile, C2H3CN, and Acetonitrile, CH3CN. Eur. Phys. J. D. 2003, 26, 201–210.CrossRefGoogle Scholar
  35. 35.
    Au, J. W.; Cooper, G.; Burton, G. R.; Olney, T. N.; Brion, C. E. The Valence Shell Photoabsorption of the Linear Alkanes, CnH2n+2(n = 1–8)-Absolute Oscillator-Strengths (7–220 eV). Chem. Phys. 1993, 173, 209–239.CrossRefGoogle Scholar
  36. 36.
    Cristoni, S.; Bernardi, L. R.; Guidugli, F.; Tubaro, N.; Traldi, P. The Role of Different Phenomena in the Surface-Activated Chemical Ionization (SACI) Performance. J. Mass Spectrom. 2005, 40, 1550–1557.CrossRefGoogle Scholar
  37. 37.
    Demtröder, W. Laser Spectroscopy, 3rd ed.; Springer: New York, 2002; p 207.Google Scholar
  38. 38.
    Johnson, P. M.; Otis, C. E. Molecular Multiphoton Spectroscopy with Ionization Detection. Annu. Rev. Phys. Chem. 1981, 32, 139–157.CrossRefGoogle Scholar
  39. 39.
    Zakheim, D. S.; Johnson, P. M. Rate-Equation Modeling of Molecular Multiphoton Ionization Dynamics. Chem. Phys. 1980, 46, 263–272.CrossRefGoogle Scholar
  40. 40.
    Hunter, E. P.; Lias, S. G. Proton Affinity Evaluation. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69; Linstrom, P. J.; Mallard, W. G., Eds.; National Institute of Standards and Technology: Gaithersburg MD, 20899 (http://webbook.nist.gov) 2005.Google Scholar
  41. 41.
    Anicich, V. G. An Index of the Literature for Bimolecular Gas Phase Cation-Molecule Reaction Kinetics, JPL Publications; California Institute of Technology: Pasadena, CA, 2003.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Matthias Lorenz
    • 1
  • Ralf Schiewek
    • 1
  • Klaus J. Brockmann
    • 1
  • Oliver J. Schmitz
    • 1
  • Siegmar Gäb
    • 1
  • Thorsten Benter
    • 1
  1. 1.Department of ChemistryUniversity of WuppertalWuppertalGermany

Personalised recommendations