Internal energy distributions in desorption electrospray ionization (DESI)

  • Marcela Nefliu
  • Jonell N. Smith
  • Andre Venter
  • R. Graham Cooks
Articles

Abstract

The internal energy distributions of typical ions generated by desorption electrospray ionization (DESI) were measured using the “survival yield” method, and compared with corresponding data for electrospray ionization (ESI) and electrosonic spray ionization (ESSI). The results show that the three ionization methods produce populations of ions having internal energy distributions of similar shapes and mean values (1.7–1.9 eV) suggesting similar phenomena, at least in the later stages of the process leading from solvated droplets to gas-phase ions. These data on energetics are consistent with the view that DESI involves “droplet pick-up” (liquid-liquid extraction) followed by ESI-like desolvation and gas-phase ion formation. The effects of various experimental parameters on the degree of fragmentation of p-methoxy-benzylpyridinium ions were compared between DESI and ESSI. The results show similar trends in the survival yields as a function of the nebulizing gas pressure, solvent flow rate, and distance from the sprayer tip to the MS inlet. These observations are consistent with the mechanism noted above and they also enable the user to exercise control over the energetics of the DESI ionization process, through manipulation of external and internal ion source parameters.

References

  1. 1.
    Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Mass Spectrometry Sampling under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471–473.CrossRefGoogle Scholar
  2. 2.
    Wiseman, J. M.; Puolitaival, S. M.; Takats, Z.; Cooks, R. G.; Caprioli, R. M. Mass Spectrometric: Profiling of Intact Biological Tissue by Using Desorption Electrospray Ionization. Angew. Chem. Int. Ed. 2005, 44, 7094–7097.CrossRefGoogle Scholar
  3. 3.
    Ifa, D. R.; Gumaelius, L. M.; Eberlin, L. S.; Manicke, N. E.; Cooks, R. G. Forensic Analysis of Inks by Imaging Desorption Electrospray Ionization (DESI) Mass Spectrometry. Analyst 2007, 132, 461–467.CrossRefGoogle Scholar
  4. 4.
    Cotte-Rodriguez, I.; Cooks, R. G. Nonproximate Detection of Explosives and Chemical Warfare Agent Stimulants by Desorption Electrospray Ionization Mass Spectrometry. Chem. Commun. 2006, 2968–2970.Google Scholar
  5. 5.
    D’Agostino, P. A.; Hancock, J. R.; Chenier, C. L.; Lepage, C. R. J. Liquid Chromatography Electrospray Tandem Mass Spectrometric and Desorption Electrospray Ionization Tandem Mass Spectrometric Analysis of Chemical Warfare Agents in Office Media Typically Collected During a Forensic Investigation. J. Chromatogr. A. 2006, 1110, 86–94.CrossRefGoogle Scholar
  6. 6.
    Rodriguez-Cruz, S. E. Rapid Analysis of Controlled Substances Using Desorption Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 53–60.CrossRefGoogle Scholar
  7. 7.
    D’Agostino, P. A.; Chenier, C. L.; Hancock, J. R.; Lepage, C. R. J. Desorption Electrospray Ionization Mass Spectrometric Analysis of Chemical Warfare Agents from Solid-Phase Microextraction Fibers. Rapid Commun. Mass Spectrom. 2007, 21, 543–549.CrossRefGoogle Scholar
  8. 8.
    Mulligan, C. C.; Talaty, N.; Cooks, R. G. Desorption Electrospray Ionization with a Portable Mass Spectrometer: In Situ Analysis of Ambient Surfaces. Chem. Commun. 2006, 1709–1711.Google Scholar
  9. 9.
    Wiseman, J. M.; Ifa, D. R.; Song, Q. Y.; Cooks, R. G. Tissue Imaging at Atmospheric Pressure Using Desorption Electrospray Ionization (DESI) Mass Spectrometry. Angew. Chem. Int. Ed. 2006, 45, 7188–7192.CrossRefGoogle Scholar
  10. 10.
    Van Berkel, G. J.; Kertesz, V. Automated Sampling and Imaging of Analytes Separated on Thin-Layer Chromatography Plates Using Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2006, 78, 4938–4944.CrossRefGoogle Scholar
  11. 11.
    Ifa, D. R.; Wiseman, J. M.; Song, Q. Y.; Cooks, R. G. Development of Capabilities for Imaging Mass Spectrometry under Ambient Conditions with Desorption Electrospray Ionization (DESI). Int. J. Mass Spectrom. 2007, 259, 8–15.CrossRefGoogle Scholar
  12. 12.
    Pan, Z. Z.; Gu, H. W.; Talaty, N.; Chen, H. W.; Shanaiah, N.; Hainline, B. E.; Cooks, R. G.; Raftery, D. Principal Component Analysis of Urine Metabolites Detected by NMR and DESI-MS in Patients with Inborn Errors of Metabolism. Anal. Bioanal. Chem. 2007, 387, 539–549.CrossRefGoogle Scholar
  13. 13.
    Chen, H. W.; Pan, Z. Z.; Talaty, N.; Raftery, D.; Cooks, R. G. Combining Desorption Electrospray Ionization Mass Spectrometry and Nuclear Magnetic Resonance for Differential Metabolomics without Sample Preparation. Rapid Commun. Mass Spectrom. 2006, 20, 1577–1584.CrossRefGoogle Scholar
  14. 14.
    Kauppila, T. J.; Wiseman, J. M.; Ketola, R. A.; Kotiaho, T.; Cooks, R. G.; Kostiainen, R. Desorption Electrospray Ionization Mass Spectrometry for the Analysis of Pharmaceuticals and Metabolites. Rapid Commun. Mass Spectrom. 2006, 20, 387–392.CrossRefGoogle Scholar
  15. 15.
    Fernandez, F. M.; Cody, R. B.; Green, M. D.; Hampton, C. Y.; McGready, R.; Sengaloundeth, S.; White, N. J.; Newton, P. N. Characterization of Solid Counterfeit Drug Samples by Desorption Electrospray Ionization and Direct-Analysis-in-Real-Time Coupled to Time-of-Flight Mass Spectrometry. Chem. Med. Chem. 2006, 1, 702–705.CrossRefGoogle Scholar
  16. 16.
    Williams, J. P.; Lock, R.; Patel, V. J.; Scrivens, J. H. Polarity Switching Accurate Mass Measurement of Pharmaceutical Samples Using Desorption Electrospray Ionization and a Dual Ion Source Interfaced to an Orthogonal Acceleration Time-of-Flight Mass Spectrometer. Anal. Chem. 2006, 78, 7440–7445.CrossRefGoogle Scholar
  17. 17.
    Leuthold, L. A.; Mandscheff, J. F.; Fathi, M.; Giroud, C.; Augsburger, M.; Varesio, E.; Hopfgartner, G. Desorption Electrospray: Ionization Mass Spectrometry: Direct Toxicological Screening and Analysis of Illicit Ecstasy Tablets. Rapid Commun. Mass Spectrom. 2006, 20, 103–110.CrossRefGoogle Scholar
  18. 18.
    Weston, D. J.; Bateman, R.; Wilson, I. D.; Wood, T. R.; Creaser, C. S. Direct Analysis of Pharmaceutical Drug Formulations Using Ion Mobility Spectrometry/Quadrupole-Time-of-Flight Mass Spectrometry Combined with Desorption Electrospray Ionization. Anal. Chem. 2005, 77, 7572–7580.CrossRefGoogle Scholar
  19. 19.
    Chen, H. W.; Talaty, N. N.; Takats, Z.; Cooks, R. G. Desorption Electrospray: Ionization Mass Spectrometry for High-Throughput Analysis of Pharmaceutical Samples in the Ambient Environment. Anal. Chem. 2005, 77, 6915–6927.CrossRefGoogle Scholar
  20. 20.
    Williams, J. P.; Patel, V. J.; Holland, R.; Scrivens, J. H. The Use of Recently Described Ionization Techniques for the Rapid Analysis of Some Common Drugs and Samples of Biological Origin. Rapid Commun. Mass Spectrom. 2006, 20, 1447–1456.CrossRefGoogle Scholar
  21. 21.
    Williams, J. P.; Scrivens, J. H. Rapid Accurate Mass Desorption Electrospray Ionization Tandem Mass Spectrometry of Pharmaceutical Samples. Rapid Commun. Mass Spectrom. 2005, 19, 3643–3650.CrossRefGoogle Scholar
  22. 22.
    Nyadong, L.; Green, M. D.; De Jesus, V. R.; Newton, P. N.; Fernandez, F. M. Reactive Desorption Electrospray Ionization Linear Ion Trap Mass Spectrometry of Latest-Generation Counterfeit Antimalarials via Noncovalent Complex Formation. Anal. Chem. 2007, 79, 2150–2157.CrossRefGoogle Scholar
  23. 23.
    Ricci, C.; Nyadong, L.; Fernandez, F. M.; Newton, P. N.; Kazarian, S. G. Combined Fourier-Transform Infrared Imaging and Desorption Electrospray-Ionization Linear Ion-Trap Mass Spectrometry for Analysis of Counterfeit Antimalarial Tablets. Anal. Bioan. Chem. 2007, 387, 551–559.CrossRefGoogle Scholar
  24. 24.
    Hu, Q. Z.; Talaty, N.; Noll, R. J.; Cooks, R. G. Desorption Electrospray Ionization Using an Orbitrap Mass Spectrometer: Exact Mass Measurements on Drugs and Peptides. Rapid Commun. Mass Spectrom. 2006, 20, 3403–3408.CrossRefGoogle Scholar
  25. 25.
    Leuthold, L. A.; Mandscheff, J. F.; Fathi, M.; Giroud, C.; Augsburger, M.; Varesio, E.; Hopfgartner, G. Direct Ambient Analysis of Pharmaceutical and Ecstasy Tablets. Chimia. 2006, 60, 190–194.CrossRefGoogle Scholar
  26. 26.
    Song, Y. S.; Talaty, N.; Tao, W. A.; Pan, Z. Z.; Cooks, R. G. Rapid Ambient Mass Spectrometric Profiling of Intact, Untreated Bacteria Using Desorption Electrospray Ionization. Chem. Commun. 2007, 61–63.Google Scholar
  27. 27.
    Nefliu, M.; Venter, A.; Cooks, R. G. Desorption Electrospray Ionization and Electrosonic Spray Ionization for Solid- and Solution-Phase Analysis of Industrial Polymers. Chem. Commun. 2006, 888–890.Google Scholar
  28. 28.
    Jackson, A. T.; Williams, J. P.; Scrivens, J. H. Desorption Electrospray Ionization Mass Spectrometry and Tandem Mass Spectrometry of Low Molecular Weight Synthetic Polymers. Rapid Commun. Mass Spectrom. 2006, 20, 2717–2727.CrossRefGoogle Scholar
  29. 29.
    Shin, Y. S.; Drolet, B.; Mayer, R.; Dolence, K.; Basile, F. Desorption Electrospray Ionization-Mass Spectrometry of Proteins. Anal. Chem. 2007, 79, 3514–3518.CrossRefGoogle Scholar
  30. 30.
    Bereman, M. S.; Nyadong, L.; Fernandez, F. M.; Muddiman, D. C. Direct High-Resolution Peptide and Protein Analysis by Desorption Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 3409–3411.CrossRefGoogle Scholar
  31. 31.
    Myung, S.; Wiseman, J. M.; Valentine, S. J.; Takats, Z.; Cooks, R. G.; Clemmer, D. E. Coupling Desorption Electrospray Ionization with Ion Mobility/Mass Spectrometry for Analysis of Protein Structure: Evidence for Desorption of Folded and Denatured States. J. Phys. Chem. B. 2006, 110, 5045–5051.CrossRefGoogle Scholar
  32. 32.
    Kaur-Atwal, G.; Weston, D. J.; Green, P. S.; Crosland, S.; Bonner, P. L. R.; Creaser, C. S. Analysis of Tryptic Peptides Using Desorption Electrospray Ionization Combined with Ion Mobility Spectrometry/Mass Spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 1131–1138.CrossRefGoogle Scholar
  33. 33.
    Zhou, Y. M.; Jin, W.; Chen, H. W.; Xu, R. F. Rapid Detection of Trace Trinitrotoluene on Various Surfaces Using Desorption Electrospray Ionization Mass Spectrometry. Chin. J. Anal. Chem. 2007, 35, 621–621.Google Scholar
  34. 34.
    Justes, D. R.; Talaty, N.; Cotte-Rodriguez, I.; Cooks, R. G. Detection of Explosives on Skin Using Ambient Ionization Mass Spectrometry. Chem. Commun. 2007, 2142–2144.Google Scholar
  35. 35.
    Cotte-Rodriguez, I.; Chen, H.; Cooks, R. G. Rapid Trace Detection of Triacetone Triperoxide (TATP) by Complexation Reactions During Desorption Electrospray Ionization. Chem. Commun. 2006, 953–955.Google Scholar
  36. 36.
    Cotte-Rodriguez, I.; Takats, Z.; Talaty, N.; Chen, H. W.; Cooks, R. G. Desorption Electrospray Ionization of Explosives on Surfaces: Sensitivity and Selectivity Enhancement by Reactive Desorption Electrospray Ionization. Anal. Chem. 2005, 77, 6755–6764.CrossRefGoogle Scholar
  37. 37.
    Takats, Z.; Cotte-Rodriguez, I.; Talaty, N.; Chen, H. W.; Cooks, R. G. Direct Trace Level Detection of Explosives on Ambient Surfaces by Desorption Electrospray Ionization Mass Spectrometry. Chem. Commun. 2005, 1950–1952.Google Scholar
  38. 38.
    Venter, A.; Sojka, P. E.; Cooks, R. G. Droplet Dynamics and Ionization Mechanisms in Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2006, 78, 8549–8555.CrossRefGoogle Scholar
  39. 39.
    Costa, A.; Cooks, R. G. Simulation of Atmospheric Transport and Droplet-Thin Film Collisions in Desorption Electrospray Ionization. Chem. Commun. 2007, 3915–3917.Google Scholar
  40. 40.
    Volny, M.; Venter, A.; Smith, S. A.; Pazzi, M.; Cooks, R. G. Surface Effects and Electrochemical Cell Capacitance in Desorption Electrospray Ionization. Analyst 2007, unpublished.Google Scholar
  41. 41.
    Takats, Z.; Wiseman, J. M.; Cooks, R. G. Ambient Mass Spectrometry Using Desorption Electrospray Ionization (DESI): Instrumentation, Mechanisms, and Applications in Forensics, Chemistry, and Biology. J. Mass Spectrom. 2005, 40, 1261–1275.CrossRefGoogle Scholar
  42. 42.
    Kenttamaa, H. I.; Cooks, R. G. Internal Energy Distributions Acquired through Collisional Activation at Low and High Energies. Int. J. Mass Spectrom. Ion Processes. 1985, 64, 79–83.CrossRefGoogle Scholar
  43. 43.
    Gabelica, V.; De Pauw, E. Internal Energy and Fragmentation of Ions Produced in Electrospray Sources. Mass Spectrom. Rev. 2005, 24, 566–587.CrossRefGoogle Scholar
  44. 44.
    Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Electrosonic Spray Ionization: A Gentle Technique for Generating Folded Proteins and Protein Complexes in the Gas Phase and for Studying Ion-Molecule Reactions at Atmospheric Pressure. Anal. Chem. 2004, 76, 4050–4058.CrossRefGoogle Scholar
  45. 45.
    Levsen, K. Fundamental Aspects of Organic Mass Spectrometry, 1st ed.; Verlag Chemie: Weinheim and New York, 1978; p 12.Google Scholar
  46. 46.
    Vekey, K.; Brenton, A. G.; Beynon, J. H. Electron Capture-Induced Decomposition (ECID): A New Method to Study Electron-Capture Collisions. Int. J. Mass Spectrom. Ion Processes. 1986, 70, 277–300.CrossRefGoogle Scholar
  47. 47.
    De Pauw, E.; Pelzer, G.; Marien, J.; Natalis, P. Internal Energy Distribution of Ions Emitted in Secondary Ion Mass Spectrometry. In Ion Formation from Organic Solids Vol. IX; Benninghoven, A. Ed.; Springer: Berlin, 1986; p 103.Google Scholar
  48. 48.
    Williams, D. H.; Naylor, S. The Internal Energy Distribution in Fast Atom Bombardment/Liquid Secondary Ion Mass Spectra. J. Chem. Soc. Chem. Commun. 1987, 18, 1408–1409.CrossRefGoogle Scholar
  49. 49.
    Collette, C.; De Pauw, E. Calibration of the Internal Energy Distribution of Ions Produced by Electrospray. Rapid Commun. Mass Spectrom. 1998, 12, 165–170.CrossRefGoogle Scholar
  50. 50.
    Luo, G.; Marginean, I.; Vertes, A. Internal Energy of Ions Generated by Matrix-Assisted Laser Desorption/Ionization. Anal. Chem. 2002, 74, 6185–6190.CrossRefGoogle Scholar
  51. 51.
    Derwa, F.; De Pauw, E.; Natalis, P. New Basis for a Method for the Estimation of Secondary Ion Internal Energy Distribution in “Soft” Ionization Techniques. Org. Mass Spectrom. 1991, 26, 117–118.CrossRefGoogle Scholar
  52. 52.
    Collette, C.; Drahos, L.; De Pauw, E.; Vekey, K. Comparison of the Internal Energy Distributions of Ions Produced by Different Electrospray Sources. Rapid Commun. Mass Spectrom. 1998, 12, 1673–1678.CrossRefGoogle Scholar
  53. 53.
    Drahos, L.; Heeren, R. M. A.; Collette, C.; De Pauw, E.; Vekey, K. Thermal Energy Distribution Observed in Electrospray Ionization. J. Mass Spectrom. 1999, 34, 1373–1379.CrossRefGoogle Scholar
  54. 54.
    Gabelica, V.; De Pauw, E.; Karas, M. Influence of the Capillary Temperature and the Source Pressure on the Internal Energy Distribution of Electrosprayed Ions. Int. J. Mass Spectrom. 2004, 231, 189–195.CrossRefGoogle Scholar
  55. 55.
    Takats, Z.; Nanita, S. C.; Cooks, R. G.; Schlosser, G.; Vekey, K. Amino Acid Clusters Formed by Sonic Spray Ionization. Anal. Chem. 2003, 75, 1514–1523.CrossRefGoogle Scholar
  56. 56.
    Naban-Maillet, J.; Lesage, D.; Bossee, A.; Gimbert, Y.; Sztaray, J.; Vekey, K.; Tabet, J. C. Internal Energy Distribution in Electrospray Ionization. J. Mass Spectrom. 2005, 40, 1–8.CrossRefGoogle Scholar
  57. 57.
    Iribarne, J. V.; Thomson, B. A. On the Evaporation of Small Ions from Charged Droplets. J. Chem. Phys. 1976, 64, 2287–2294.CrossRefGoogle Scholar
  58. 58.
    Thompson, B. A.; Iribarne, J. V. Field Induced Ion Evaporation from Liquid Surfaces at Atmospheric Pressure. J. Chem. Phys. 1979, 71, 4451–4463.CrossRefGoogle Scholar
  59. 59.
    Iribarne, J. V.; Dziedzic, P. J.; Thomson, B. A. Atmospheric Pressure Ion Evaporation-Mass Spectrometry. Int. J. Mass Spectrom. Ion Phys. 1983, 50, 331–347.CrossRefGoogle Scholar
  60. 60.
    Dole, M.; Mack, L. L.; Hines, R. L. Molecular Beams of Macroions. J. Chem. Phys. 1968, 49, 2240–2249.CrossRefGoogle Scholar
  61. 61.
    Fisenko, S. P.; Wang, W. N.; Lenggoro, I. W.; Okyuama, K. Evaporative Cooling of Micron-Sized Droplets in a Low-Pressure Aerosol Reactor. Chem. Eng. Sci. 2006, 61, 6029–6034.CrossRefGoogle Scholar
  62. 62.
    Campbell, V. L.; Guan, Z.; Laude, D. A. Jr. Selective Generation of Charge-Dependent/Independent Ion Energy Distributions from a Heated Capillary Electrospray Source. J. Am. Soc. Mass Spectrom. 1994, 5, 221–229.CrossRefGoogle Scholar
  63. 63.
    Bristow, A. W. T.; Nichols, W. F.; Webb, K. S.; Conway, B. Evaluation of Protocols for Reproducible Electrospray in-Source Collisionally Induced Dissociation on Various Liquid Chromatography/Mass Spectrometry Instruments and the Development of Spectral Libraries. Rapid Commun. Mass Spectrom. 2002, 16, 2374–2386.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Marcela Nefliu
    • 1
  • Jonell N. Smith
    • 1
  • Andre Venter
    • 1
  • R. Graham Cooks
    • 1
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations