Advertisement

Hybrid mass spectrometers for tandem mass spectrometry

  • Gary L. Glish
  • David J. Burinsky
Focus: Cooks, 2006 Distinguished Contribution In Mass Spectrometry Awardee Account And Perspective

Abstract

Mass spectrometers that use different types of analyzers for the first and second stages of mass analysis in tandem mass spectrometry (MS/MS) experiments are often referred to as “hybrid” mass spectrometers. The general goal in the design of a hybrid instrument is to combine different performance characteristics offered by various types of analyzers into one mass spectrometer. These performance characteristics may include mass resolving power, the ion kinetic energy for collision-induced dissociation, and speed of analysis. This paper provides a review of the development of hybrid instruments over the last 30 years for analytical applications.

Keywords

Electron Capture Dissociation Quadrupole Mass Filter Hybrid Instrument Kinetic Ener McLa Fferty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kondrat, R. W.; Cooks, R. G. Direct Analysis of Mixtures by Mass Spectrometry. Anal. Chem. 1978, 50, 81A-92A.CrossRefGoogle Scholar
  2. 2.
    Kruger, T. L.; Litton, J. F.; Kondrat, R. W.; Cooks, R. G. Mixture Analysis by Mass-Analyzed Ion Kinetic-Energy Spectrometry. Anal. Chem. 1976, 48, 2113–2119.CrossRefGoogle Scholar
  3. 3.
    Solterorigau, E.; Kruger, T. L.; Cooks, R. G. Identification of Barbiturates by Chemical Ionization and Mass-Analyzed Ion Kinetic-Energy Spectrometry. Anal. Chem. 1977, 49, 435–442.CrossRefGoogle Scholar
  4. 4.
    Kondrat, R. W.; Cooks, R. G. Alkaloids in Whole Plant Material—Direct Analysis by Kinetic-Energy Spectrometry. Science 1978, 199, 978–980.CrossRefGoogle Scholar
  5. 5.
    Kondrat, R. W.; McClusky, G. A.; Cooks, R. G. Direct Mass Spectrometric Mixture Analysis by Negative Chemical Ionization-Mass-Analyzed Ion Kinetic-Energy Spectrometry. Anal. Chem. 1978, 50, 1222–1223.CrossRefGoogle Scholar
  6. 6.
    McClusky, G. A.; Kondrat, R. W.; Cooks, R. G. Direct Mixture Analysis by Mass-Analyzed Ion Kinetic-Energy Spectrometry Using Negative Chemical Ionization. J. Am. Chem. Soc. 1978, 100, 6045–6051.CrossRefGoogle Scholar
  7. 7.
    Kondrat, R. W.; McClusky, G. A.; Cooks, R. G. Multiple Reaction Monitoring in Mass Spectrometry Mass Spectrometry for Direct Analysis of Complex Mixtures. Anal. Chem. 1978, 50, 2017–2021.CrossRefGoogle Scholar
  8. 8.
    Youssefi, M.; Cooks, R. G.; McLaughlin, J. L. Mapping of Cocaine and Cinnamoylcocaine in Whole Coca Plant Tissues by MIKES. J. Am. Chem. Soc. 1979, 101, 3400–3402.CrossRefGoogle Scholar
  9. 9.
    Kruger, T. L.; Kondrat, R. W.; Joseph, K. T.; Cooks, R. G. Identification of Individual Steroids in Biological Matrices by Mass-Analyzed Ion Kinetic-Energy Spectrometry. Anal. Biochem. 1979, 96, 104–112.CrossRefGoogle Scholar
  10. 10.
    Zakett, D.; Schoen, A. E.; Kondrat, R. W.; Cooks, R. G. Selected Fragment Scans of Mass Spectrometers in Direct Mixture Analysis. J. Am. Chem. Soc. 1979, 101, 6781–6783.CrossRefGoogle Scholar
  11. 11.
    McLafferty, F. W.; Bockhoff, F. M. Separation-Identification System for Complex-Mixtures Using Mass Separation and Mass-Spectral Characterization. Anal. Chem. 1978, 50, 69–76.CrossRefGoogle Scholar
  12. 12.
    McLafferty, F. W. Tandem Mass Spectrometry (MS-MS)—Promising New Analytical Technique for Specific Component Determination in Complex Mixtures. Acc. Chem. Res. 1980, 13, 33–39.CrossRefGoogle Scholar
  13. 13.
    Beynon, J. H.; Cooks, R. G.; Amy, J. W.; Baitinge, We; Ridley, T. Y. Design and Performance of a Mass Analyzed Ion Kinetic-Energy (MIKE) Spectrometer. Anal. Chem. 1973, 45, 1023A-1031A.CrossRefGoogle Scholar
  14. 14.
    Gross, M. L.; Chess, E. K.; Lyon, P. A.; Crow, F. W.; Evans, S.; Tudge, H. Triple Analyzer Mass Spectrometry for High-Resolution MS/MS Studies. Int. J. Mass Spectrom. Ion Processes 1982, 42, 243–254.CrossRefGoogle Scholar
  15. 15.
    McLafferty, F. W.; Todd, P. J.; McGilvery, D. C.; Baldwin, M. A. Collisional Activation and Metastable Ion Characteristics, 73: High-Resolution Tandem Mass Spectrometer (MS-MS) of Increased Sensitivity and Mass Range. J. Am. Chem. Soc. 1980, 102, 3360–3363.CrossRefGoogle Scholar
  16. 16.
    Futrell, J. H.; Miller, C. D. Tandem Mass Spectrometer for Study of Ion-Molecule Reactions. Rev. Sci. Instrum. 1966, 37, 1521–1526.CrossRefGoogle Scholar
  17. 17.
    Maquestiau, A.; Vanhaverbeke, Y.; Demeyer, C.; Flammang, R.; Perlaux, J. Modification of a Reversed Geometry Mass Spectrometer and Applications to Collisional Processes. Bull. Soc. Chim. Belg. 1976, 85, 69–78.CrossRefGoogle Scholar
  18. 18.
    Boyd, R. K.; Beynon, J. H. Scanning of Sector Mass Spectrometers to Observe Fragmentations of Metastable Ions. Org. Mass Spectrom. 1977, 12, 163–165.CrossRefGoogle Scholar
  19. 19.
    Morgan, R. P.; Beynon, J. H.; Bateman, R. H.; Green, B. N. Mm-Zab-2f Double-Focusing Mass Spectrometer and MIKE Spectrometer. Int. J. Mass Spectrom. Ion Processes. 1978, 28, 171–191.CrossRefGoogle Scholar
  20. 20.
    Laramee, J. A.; Carmody, J. J.; Cooks, R. G. Angle-Resolved Mass Spectrometry. Int. J. Mass Spectrom. Ion Processes 1979, 31, 333–343.CrossRefGoogle Scholar
  21. 21.
    Fedor, D. M.; Cooks, R. G. Angle Resolved Mass Spectrometry with a Reversed Geometry Spectrometer. Anal. Chem. 1980, 52, 679–682.CrossRefGoogle Scholar
  22. 22.
    Russell, D. H.; Smith, D. H.; Warmack, R. J.; Bertram, L. K. The Design and Performance Evaluation of a New High-Performance Mass-Analyzed Ion Kinetic-Energy (MIKE) Spectrometer. Int. J. Mass Spectrom. Ion Processes 1980, 35, 381–391.CrossRefGoogle Scholar
  23. 23.
    Yost, R. A.; Enke, C. G. Selected Ion Fragmentation with a Tandem Quadrupole Mass Spectrometer. J. Am. Chem. Soc. 1978, 100, 2274–2275.CrossRefGoogle Scholar
  24. 24.
    Vestal, M. L.; Futrell, J. H. Photodissociation of CH3Cl+ and CH3Br+ in a Tandem Quadrupole Mass Spectrometer. Chem. Phys. Lett. 1974, 28, 559–561.CrossRefGoogle Scholar
  25. 25.
    McGilvery, D. C.; Morrison, J. D. Mass Spectrometer for Study of Laser-Induced Photo-Dissociation of Ions. Int. J. Mass Spectrom. Ion Processes. 1978, 28, 81–92.CrossRefGoogle Scholar
  26. 26.
    Glish, G. L. Mass Spectrometry/Mass Spectrometry: Applications and New Instrumentation. Ph.D. Thesis, Purdue University, 1980; pp. 37–58.Google Scholar
  27. 27.
    Glish, G. L.; McLuckey, S. A.; Ridley, T. Y.; Cooks, R. G. A New Hybrid Sector/Quadrupole Mass Spectrometer for Mass Spectrometry/Mass Spectrometry. Int. J. Mass Spectrom. Ion Phys. 1982, 41, 157–177.CrossRefGoogle Scholar
  28. 28.
    Jennings, K. R. Collision-Induced Decompositions of Aromatic Molecular Ions. Int. J. Mass Spectrom. Ion Phys. 1968, 1, 227–235.CrossRefGoogle Scholar
  29. 29.
    Zakett, D.; Cooks, R. G.; Fies, W. J. A Double Quadrupole for Mass Spectrometry/Mass Spectrometry. Anal. Chim. Acta. 1980, 119, 129–135.CrossRefGoogle Scholar
  30. 30.
    Zakett, D.; Hemberger, P. H.; Cooks, R. G. Functional Group Screening of Complex Mixtures with a Double Quadrupole Mass Spectrometer. Anal. Chim. Acta. 1980, 119, 149–152.CrossRefGoogle Scholar
  31. 31.
    Busch, K. L.; Kruger, T. L.; Cooks, R. G. Charge-Exchange Using a Double Quadrupole Mass Spectrometer. Anal. Chim. Acta. 1980, 119, 153–156.CrossRefGoogle Scholar
  32. 32.
    Glish, G. L.; Cooks, R. G. Direct Analysis of Mixtures by Double Quadrupole Mass Spectrometry. Anal. Chim. Acta. 1980, 119, 145–148.CrossRefGoogle Scholar
  33. 33.
    Glish, G. L.; Hemberger, P. H.; Cooks, R. G. Ion Structure Determinations and Ion-Molecule Reactions by Double Quadrupole Mass Spectrometry. Anal. Chim. Acta. 1980, 119, 137–144.CrossRefGoogle Scholar
  34. 34.
    Schoen, A. E.; Amy, J. W.; Ciupek, J. D.; Cooks, R. G.; Dobberstein, P.; Jung, G. A Hybrid BEqQ Mass Spectrometer. Int. J. Mass Spectrom. Ion Processes 1985, 65, 125–140.CrossRefGoogle Scholar
  35. 35.
    Glish, G. L.; McLuckey, S. A.; McBay, E. H.; Bertram, L. K. Design and Performance of a Hybrid Mass Spectrometer of QEB Geometry. Int. J. Mass Spectrom. Ion Processes 1986, 70, 321–338.CrossRefGoogle Scholar
  36. 36.
    Glish, G. L.; McLuckey, S. A. High-Resolution Detection of Daughter Ions with a Hybrid Mass Spectrometer. Anal. Chem. 1986, 58, 1887–1889.CrossRefGoogle Scholar
  37. 37.
    Holland, J. F.; Enke, C. G.; Allison, J.; Stults, J. T.; Pinkston, J. D.; Newcome, B.; Watson, J. T. Mass Spectrometry on the Chromatographic Time Scale—Realistic Expectations. Anal. Chem. 1983, 55, 997A-1112A.CrossRefGoogle Scholar
  38. 38.
    Stults, J. T.; Enke, C. G.; Holland, J. F. Mass Spectrometry/Mass Spectrometry by Time-Resolved Magnetic Dispersion. Anal. Chem. 1983, 55, 1323–1330.CrossRefGoogle Scholar
  39. 39.
    Enke, C. G.; Stults, J. T.; Holland, J. F.; Pinkston, J. D.; Allison, J.; Watson, J. T. MS-MS by Time-Resolved Magnetic Dispersion Mass Spectrometry. Int. J. Mass Spectrom. Ion Processes 1983, 46, 229–232.CrossRefGoogle Scholar
  40. 40.
    Eckenrode, B. A.; Watson, J. T.; Enke, C. G.; Holland, J. F. Post-Sector Beam Deflection in Time-Resolved Ion Momentum Spectrometry (TRIMS). Int. J. Mass Spectrom. Ion Processes 1988, 83, 177–187.CrossRefGoogle Scholar
  41. 41.
    Stults, J. T.; Holland, J. F.; Watson, J. T.; Enke, C. G. Time-of-Flight Space and Energy Focusing Examined in Time-Resolved Ion Momentum Spectrometry. Int. J. Mass Spectrom. Ion Processes 1986, 71, 169–181.CrossRefGoogle Scholar
  42. 42.
    Pinkston, J. D.; Rabb, M.; Watson, J. T.; Allison, J. New Time-of-Flight Mass Spectrometer for Improved Mass Resolution,Versatility, and Mass Spectrometry/Mass Spectrometry Studies. Rev. Sci. Instrum. 1986, 57, 583–592.CrossRefGoogle Scholar
  43. 43.
    Holland, J. F.; Newcombe, B.; Tecklenburg, R. E.; Davenport, M.; Allison, J.; Watson, J. T.; Enke, C. G. Design, Construction, and Evaluation of an Integrating Transient Recorder for Data Acquisition in Capillary Gas-Chromatography Time-of-Flight Mass Spectrometry. Rev. Sci. Instrum. 1991, 62, 69–76.CrossRefGoogle Scholar
  44. 44.
    Eckenrode, B. A.; Watson, J. T.; Enke, C. G.; Holland, J. F. Complete Mass Spectrometry/Mass Spectrometry Data Field Acquisition on the Chromatographic Time Scale by Time-Resolved Ion Momentum Spectrometry with Time-Array Detection. Anal. Chem. 1990, 62, 1362–1367.CrossRefGoogle Scholar
  45. 45.
    Enke, C. G.; Newcome, B. H.; Holland, J. F. High Repetition Rate Transient Recorder with Automatic Integration. U.S. patent 4490806, 1984.Google Scholar
  46. 46.
    Yefchak, G. E.; Schultz, G. A.; Allison, J.; Enke, C. G.; Holland, J. F. Beam Deflection for Temporal Encoding in Time-of-Flight Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1990, 1, 440–447.CrossRefGoogle Scholar
  47. 47.
    Medzihradszky, K. F.; Adams, G. W.; Burlingame, A. L. Peptide Sequence Determination by Matrix-Assisted Laser Desorption Ionization Employing a Tandem Double Focusing Magnetic-Orthogonal Acceleration Time-of-Flight Mass Spectrometer. J. Am. Soc. Mass Spectrom. 1996, 7, 1–10.CrossRefGoogle Scholar
  48. 48.
    Bateman, R. H.; Green, M. R.; Scott, G.; Clayton, E. A Combined Magnetic Sector-Time-of-Flight Mass Spectrometer for Structural Determination Studies by Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 1995, 9, 1227–1233.CrossRefGoogle Scholar
  49. 49.
    Anderson, U. N.; Colburn, A. W.; Makarov, A. A.; Raptakis, E. N.; Reynolds, D. J.; Derrick, P. J.; Davis, S. C.; Hoffman, A. D.; Thomson, S. In-Series Combination of a Magnetic-Sector Mass Spectrometer with a Time-of-Flight Quadratic-Field Ion Mirror. Rev. Sci. Instrum. 1998, 69, 1650–1660.CrossRefGoogle Scholar
  50. 50.
    Nikolaev, E. N.; Somogyi, A.; Smith, D. L.; Gu, C. G.; Wysocki, V. H.; Martin, C. D.; Samuelson, G. L. Implementation of Low-Energy Surface-Induced Dissociation (eV SID) and High-Energy Collision-Induced Dissociation (KeV-CID) in a Linear Sector-TOF Hybrid Tandem Mass Spectrometer. Int. J. Mass Spectrom. 2001, 212, 535–551.CrossRefGoogle Scholar
  51. 51.
    Cooks, R. G.; Beynon, J. H.; Caprioli, R. M.; Lester, G. R. Metastable Ions; Elsevier Scientific Publishing: Amsterdam, 1973; pp. 63–64.Google Scholar
  52. 52.
    Glish, G. L.; Goeringer, D. E. Tandem Quadrupole/Time-of-Flight Instrument for Mass Spectrometry/Mass Spectrometry. Anal. Chem. 1984, 56, 2291–2295.CrossRefGoogle Scholar
  53. 53.
    Glish, G. L.; McLuckey, S. A.; McKown, H. S. Improved Performance of a Tandem Quadrupole Time-of-Flight Mass Spectrometer. Anal. Instrum. 1987, 16, 191–206.CrossRefGoogle Scholar
  54. 54.
    van den Heuvel, R. H. H.; van Duijn, E.; Mazon, H.; Synowsky, S. A.; Lorenzen, K.; Versluis, C.; Brouns, S. J. J.; Langridge, D.; van der Oost, J.; Hoyes, J.; Heck, A. J. R. Improving the Performance of a Quadrupole Time-of-Flight Instrument for Macromolecular Mass Spectrometry. Anal. Chem. 2006, 78, 7473–7483.CrossRefGoogle Scholar
  55. 55.
    Stafford, G. C. J.; Kelley, P. E.; Syka, J. E. P.; Reynolds, W. E.; Todd, J. F. J. Recent Improvements in and Analytical Applications of Advanced Ion Trap Technology. Int. J. Mass Spectrom. Ion Processes. 1984, 60, 85–98.CrossRefGoogle Scholar
  56. 56.
    Schwartz, J.; Kaiser, R. E.; Cooks, R. G. A Sector/Ion Trap Hybrid Mass Spectrometer of BE/Trap Configuration. Int. J. Mass Spectrom. Ion Processes. 1990, 98, 209–224.CrossRefGoogle Scholar
  57. 57.
    Morand, K. L.; Horing, S. R.; Cooks, R. G. A Tandem Quadrupole-Ion Trap Mass Spectrometer. Int. J. Mass Spectrom. Ion Processes. 1991, 105, 13–29.CrossRefGoogle Scholar
  58. 58.
    Hager, J. W. A New Linear Ion Trap Mass Spectrometer. Rapid Commun. Mass Spectrom. 2002, 16, 512–526.CrossRefGoogle Scholar
  59. 59.
    Hager, J. W. Performance Optimization and Fringing Field Modifications of a 24-mm Long rf-Only Quadrupole Mass Spectrometer. Rapid Commun. Mass Spectrom. 1999, 13, 740–748.CrossRefGoogle Scholar
  60. 60.
    Marshall, A. G.; Comisarow, M. Fourier Transform Ion Cyclotron Resonance (FT-ICR) Spectroscopy. Chem. Phys. Lett. 1974, 25, 282–283.CrossRefGoogle Scholar
  61. 61.
    McIver, R. T.; Hunter, R. L.; Bowers, W. D. Coupling a Quadrupole Mass Spectrometer and a Fourier-Transform Mass Spectrometer. Int. J. Mass Spectrom. Ion Processes 1985, 64, 67–77.CrossRefGoogle Scholar
  62. 62.
    Hunt, D. F.; Shabanowitz, J.; Yates, J. R.; McIver, R. T.; Hunter, R. L.; Syka, J. E. P.; Amy, J. Tandem Quadrupole Fourier-Transform Mass Spectrometry of Oligopeptides. Anal. Chem. 1985, 57, 2728–2733.CrossRefGoogle Scholar
  63. 63.
    Hunt, D. F.; Shabanowitz, J.; Yates, J. R.; Zhu, N. Z.; Russell, D. H.; Castro, M. E. Tandem Quadrupole Fourier-Transform Mass Spectrometry of Oligopeptides and Small Proteins. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 620–623.CrossRefGoogle Scholar
  64. 64.
    Belov, M. E.; Nikolaev, E. N.; Anderson, G. A.; Auberry, K. J.; Harkewicz, R.; Smith, R. D. Electrospray Ionization-Fourier Transform Ion Cyclotron Mass Spectrometry Using Ion Preselection and External Accumulation for Ultrahigh Sensitivity. J. Am. Soc. Mass Spectrom. 2001, 12, 38–48.CrossRefGoogle Scholar
  65. 65.
    Patrie, S. M.; Charlebois, J. P.; Whipple, D.; Kelleher, N. L.; Hendrickson, C. L.; Quinn, J. P.; Marshall, A. G.; Mukhopadhyay, B. Construction of a Hybrid Quadrupole/Fourier Transform Ion Cyclotron Resonance Mass Spectrometer for Versatile MS/MS above 10 KDa. J. Am. Soc. Mass Spectrom. 2004, 15, 1099–1108.CrossRefGoogle Scholar
  66. 66.
    O’Connor, P. B.; Pittman, J. L.; Thomson, B. A.; Budnik, B. A.; Cournoyer, J. C.; Jebanathirajah, J.; Lin, C.; Moyer, S.; Zhao, C. A New Hybrid Electrospray Fourier Transform Mass Spectrometer: Design and Performance Characteristics. Rapid Commun. Mass Spectrom. 2006, 20, 259–266.CrossRefGoogle Scholar
  67. 67.
    Borchers, C. H.; Thapar, R.; Petrotchenko, E. V.; Torres, M. P.; Speir, J. P.; Easterling, M.; Dominski, Z.; Marzluff, W. F. Combined Top-Down and Bottom-up Identifies a Phosphorylation Proteins That Contributes to Proteomics Site in Stem-Loop-Binding High-Affinity RRNA Binding. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 3094–3099.CrossRefGoogle Scholar
  68. 68.
    Robinson, N. E.; Lampi, K. J.; McIver, R. T.; Williams, R. H.; Muster, W. C.; Kruppa, G.; Robinson, A. B. Quantitative Measurement of Deamidation in Lens β B2-Crystallin and Peptides by Direct Electrospray Injection and Fragmentation in a Fourier Transform Mass Spectrometer. Mol. Vis. 2005, 11, 1211–1219.Google Scholar
  69. 69.
    Michael, S. M.; Chien, M.; Lubman, D. M. An Ion Trap Storage Time-of-Flight Mass Spectrometer. Rev. Sci. Instrum. 1992, 63, 4277–4284.CrossRefGoogle Scholar
  70. 70.
    Fountain, S. T.; Lee, H. W.; Lubman, D. M. Mass-Selective Analysis of Ions in Time-of-Flight Mass Spectrometry Using an Ion-Trap Storage Device. Rapid Commun. Mass Spectrom. 1994, 8, 487–494.CrossRefGoogle Scholar
  71. 71.
    Doroshenko, V. M.; Cotter, R. J. A Quadrupole Ion Trap Time-of-Flight Mass Spectrometer with a Parabolic Reflectron. J. Mass Spectrom. 1998, 33, 305–318.CrossRefGoogle Scholar
  72. 72.
    Douglas, D. J.; Campbell, J. M.; Collings, B. A. A New Linear Ion Trap Time-of-Flight System with Tandem Mass Spectrometry Capabilities. Rapid Commun. Mass Spectrom. 1998, 12, 1463–1474.CrossRefGoogle Scholar
  73. 73.
    Schwartz, J. C.; Senko, M. W.; Syka, J. E. P. A Two-Dimensional Quadrupole Ion Trap Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2002, 13, 659–669.CrossRefGoogle Scholar
  74. 74.
    Gabryelski, W.; Li, L. Photo-Induced Dissociation of Electrospray Generated Ions in an Ion Trap/Time-of-Flight Mass Spectrometer. Rev. Sci. Instrum. 1999, 70, 4192–4199.CrossRefGoogle Scholar
  75. 75.
    Gabryelski, W.; Li, L. Photoinduced Dissociation of Electrospray-Generated Ions in an Ion Trap/Time-of-Flight Mass Spectrometer Using a Pulsed CO2 Laser. Rapid Commun. Mass Spectrom. 2002, 16, 1805–1811.CrossRefGoogle Scholar
  76. 76.
    Martin, R. L.; Brancia, F. L. Analysis of High Mass Peptides Using a Novel Matrix-Assisted Laser Desorption/Ionization Quadrupole Ion Trap Time-of-Flight Mass Spectrometer. Rapid Commun. Mass Spectrom. 2003, 17, 1358–1365.CrossRefGoogle Scholar
  77. 77.
    Bereszczak, J. Z.; Brancia, F. L.; Quijano, F. A. R.; Goux, W. J. Relative Quantification of Tau-Related Peptides Using Guanidino-Labeling Derivatization (GLAD) with On-Line LC on a Hybrid Ion Trap (IT) Time-of-Flight (TOF) Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2007, 18, 201–207.CrossRefGoogle Scholar
  78. 78.
    Hashimoto, Y.; Waki, I.; Yoshinari, K.; Shishika, T.; Terui, Y. Orthogonal Trap Time-of-Flight Mass Spectrometer Using a Collisional Damping Chamber. Rapid Commun. Mass Spectrom. 2005, 19, 221–226.CrossRefGoogle Scholar
  79. 79.
    Hashimoto, Y.; Hasegawa, H.; Waki, I. Dual Linear Ion Trap/Orthogonal Acceleration Time-of-Flight Mass Spectrometer with Improved Precursor Ion Selectivity. Rapid Commun. Mass Spectrom. 2005, 19, 1485–1491.CrossRefGoogle Scholar
  80. 80.
    Makarov, A. Electrostatic Axially Harmonic Orbital Trapping: A High-Performance Technique of Mass Analysis. Anal. Chem. 2000, 72, 1156–1162.CrossRefGoogle Scholar
  81. 81.
    Syka, J. E. P.; Marto, J. A.; Bai, D. L.; Horning, S.; Senko, M. W.; Schwartz, J. C.; Ueberheide, B.; Garcia, B.; Busby, S.; Muratore, T.; Shabanowitz, J.; Hunt, D. F. Novel Linear Quadrupole Ion Trap/FT Mass Spectrometer: Performance Characterization and Use in the Comparative Analysis of Histone H3 Post-Translational Modifications. J. Proteome Res. 2004, 3, 621–626.CrossRefGoogle Scholar
  82. 82.
    Makarov, A.; Denisov, E.; Kholomeev, A.; Baischun, W.; Lange, O.; Strupat, K.; Horning, S. Performance Evaluation of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer. Anal. Chem. 2006, 78, 2113–2120.CrossRefGoogle Scholar
  83. 83.
    Makarov, A.; Denisov, E.; Lange, O.; Horning, S. Dynamic Range of Mass Accuracy in LTQ Orbitrap Hybrid Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2006, 17, 977–982.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of North Carolina-Chapel HillChapel HillUSA
  2. 2.GlaxoSmithKline, Five Moore DriveResearch Triangle ParkUSA

Personalised recommendations