Which electrospray-based ionization method best reflects protein-ligand interactions found in solution? A comparison of ESI, nanoESI, and ESSI for the determination of dissociation constants with mass spectrometry

  • Matthias Conradin Jecklin
  • David Touboul
  • Cédric Bovet
  • Arno Wortmann
  • Renato Zenobi


We present a comparison of three different electrospray-based ionization techniques for the investigation of noncovalent complexes with mass spectrometry. The features and characteristics of standard electrospray ionization (ESI), chip-based nanoESI, and electrosonic spray ionization (ESSI) mounted onto a hybrid quadrupole time-of-flight mass spectrometer were compared in their performance to determine the dissociation constant (KD) of the model system hen egg white lysozyme (HEWL) binding to N,N′,N″-triacetylchitotriose (NAG3). The best KD value compared with solution data were found for ESSI, 19.4 ± 3.6 µM. Then, we determined the KDs of the two nucleotide binding sites of adenylate kinase (AK), where we obtained KDs of 2.2 ± 0.8 µM for the first and 19.5 ± 8.0 µM for the second binding site using ESSI. We found a weak charge state dependence of the KD for both protein-ligand systems, where for all ionization techniques the KD value decreases with increasing charge state. We demonstrate that ESSI is very gentle and insensitive to instrumental parameters, and the KD obtained is in good agreement with solution phase results from the literature. In addition, we tried to determine the KD for the lymphocyte-specific kinase LCK binding to a kinase inhibitor using nanoESI due to the very low amount of sample available. In this case, we found KD values with a strong charge state dependence, which were in no case close to literature values for solution phase.


  1. 1.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass-Spectrometry of Large Biomolecules. Science. 1989, 246, 64–71.CrossRefGoogle Scholar
  2. 2.
    Gross, J. H. Mass Spectrometry: A Textbook, 2nd ed.; Springer-Verlag: Berlin and Heidelberg, 2004; 441–474.CrossRefGoogle Scholar
  3. 3.
    Cloupeau, M.; Prunetfoch, B. Electrohydrodynamic Spraying Functioning Modes—A Critical-Review. J. Aerosol Sci. 1994, 25, 1021–1036.CrossRefGoogle Scholar
  4. 4.
    Parvin, L.; Galicia, M. C.; Gauntt, J. M.; Carney, L. M.; Nguyen, A. B.; Park, E.; Heffernan, L.; Vertes, A. Electrospray Diagnostics by Fourier Analysis of Current Oscillations and Fast Imaging. Anal. Chem. 2005, 77, 3908–3915.CrossRefGoogle Scholar
  5. 5.
    Nemes, P.; Marginean, I.; Vertes, A. Spraying Mode Effect on Droplet Formation and Ion Chemistry in Electrosprays. Anal. Chem. 2007, 79, 3105–3116.CrossRefGoogle Scholar
  6. 6.
    Bruins, A. P.; Covey, T. R.; Henion, J. D. Ion Spray Interface for Combined Liquid Chromatography/Atmospheric Pressure Ionization Mass-Spectrometry. Anal. Chem. 1987, 59, 2642–2646.CrossRefGoogle Scholar
  7. 7.
    Wilm, M. S.; Mann, M. Electrospray and Taylor-Cone Theory, Doles Beam of Macromolecules at Last. Int. J. Mass Spectrom Ion Processes. 1994, 136, 167–180.CrossRefGoogle Scholar
  8. 8.
    Wilm, M.; Mann, M. Analytical Properties of the Nanoelectrospray Ion Source. Anal. Chem. 1996, 68, 1–8.CrossRefGoogle Scholar
  9. 9.
    Wilm, M.; Shevchenko, A.; Houthaeve, T.; Breit, S.; Schweigerer, L.; Fotsis, T.; Mann, M. Femtomole Sequencing of Proteins from Polyacrylamide Gels by Nano-Electrospray Mass Spectrometry. Nature. 1996, 379, 466–469.CrossRefGoogle Scholar
  10. 10.
    Schultz, G. A.; Corso, T. N.; Prosser, S. J.; Zhang, S. A Fully Integrated Monolithic Microchip Electrospray Device for Mass Spectrometry. Anal. Chem. 2000, 72, 4058–4063.CrossRefGoogle Scholar
  11. 11.
    Zhang, S.; Van Pelt, C. K. Chip-Based Nanoelectrospray Mass Spectrometry for Protein Characterization. Expert Rev. Proteom. 2004, 1, 449–468.CrossRefGoogle Scholar
  12. 12.
    Kebarle, P.; Tang, L. From Ions in Solution to Ions in the Gas Phase—the Mechanism of Electrospray Mass-Spectrometry. Anal. Chem. 1993, 65, A972-A986.Google Scholar
  13. 13.
    Juraschek, R.; Dulcks, T.; Karas, M. Nanoelectrospray— More than Just a Minimized-Flow Electrospray Ionization Source. J. Am Soc. Mass Spectrom. 1999, 10, 300–308.CrossRefGoogle Scholar
  14. 14.
    Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Electrosonic Spray Ionization: A Gentle Technique for Generating Folded Proteins and Protein Complexes in the Gas Phase and for Studying Ion-Molecule Reactions at Atmospheric Pressure. Anal. Chem. 2004, 76, 4050–4058.CrossRefGoogle Scholar
  15. 15.
    Hirabayashi, A.; Sakairi, M.; Koizumi, H. Sonic Spray Ionization Method for Atmospheric-Pressure Ionization Mass-Spectrometry. Anal. Chem. 1994, 66, 4557–4559.CrossRefGoogle Scholar
  16. 16.
    Hirabayashi, A.; Sakairi, M.; Koizumi, H. Sonic Spray Mass-Spectrometry. Anal. Chem. 1995, 67, 2878–2882.CrossRefGoogle Scholar
  17. 17.
    Wiseman, J. M.; Takats, Z.; Gologan, B.; Davisson, V. J.; Cooks, R. G. Direct Characterization of Enzyme-Substrate Complexes by Using Electrosonic Spray Ionization Mass Spectrometry. Angew. Chem. Int. Ed. 2005, 44, 913–916.CrossRefGoogle Scholar
  18. 18.
    Ganem, B.; Li, Y. T.; Henion, J. D. Observation of Noncovalent Enzyme Substrate and Enzyme Product Complexes by Ion-Spray Mass-Spectrometry. J. Am. Chem. Soc. 1991, 113, 7818–7819.CrossRefGoogle Scholar
  19. 19.
    Smith, R. D.; Lightwahl, K. J. The Observation of Noncovalent Interactions in Solution by Electrospray-Ionization Mass-Spectrometry—Promise, Pitfalls, and Prognosis. Biol. Mass Spectrom. 1993, 22, 493–501.CrossRefGoogle Scholar
  20. 20.
    Loo, J. A. Studying Noncovalent Protein Complexes by Electrospray Ionization Mass Spectrometry. Mass Spectrom. Rev. 1997, 16, 1–23.CrossRefGoogle Scholar
  21. 21.
    Schnier, P. D.; Klassen, J. S.; Strittmatter, E. E.; Williams, E. R. Activation Energies for Dissociation of Double Strand Oligonucleotide Anions: Evidence for Watson-Crick Base Pairing in Vacuo. J. Am. Chem. Soc. 1998, 120, 9605–9613.CrossRefGoogle Scholar
  22. 22.
    Heck, A. J. R.; van den Heuvel, R. H. H. Investigation of Intact Protein Complexes by Mass Spectrometry. Mass Spectrom. Rev. 2004, 23, 368–389.CrossRefGoogle Scholar
  23. 23.
    Ashcroft, A. E. Recent Developments in Electrospray Ionization Mass Spectrometry: Noncovalently Bound Protein Complexes. Nat. Prod. Rep. 2005, 22, 452–464.CrossRefGoogle Scholar
  24. 24.
    Hofstadler, S. A.; Sannes-Lowery, K. A. Applications of ESI-MS in Drug Discovery: Interrogation of Noncovalent Complexes. Nat. Rev. Drug Discov. 2006, 5, 585–595.CrossRefGoogle Scholar
  25. 25.
    Cunniff, J. B.; Vouros, P. False Positives and the Detection of Cyclodextrin Inclusion Complexes by Electrospray Mass-Spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 437–447.CrossRefGoogle Scholar
  26. 26.
    Kitova, E. N.; Wang, W. J.; Bundle, D. R.; Klassen, J. S. Retention of Bioactive Ligand Conformation in a Gaseous Protein-Trisaccharide Complex. J. Am. Chem. Soc. 2002, 124, 13980–13981.CrossRefGoogle Scholar
  27. 27.
    Hossain, B. M.; Simmons, D. A.; Konermann, L. Do Electrospray Mass Spectra Reflect the Ligand Binding State of Proteins in Solution?. Can. J. Chem. Rev. 2005, 83, 1953–1960.CrossRefGoogle Scholar
  28. 28.
    Iavarone, A. T.; Parks, J. H. Conformational Change in Unsolvated Trp-Cage Protein Probed by Fluorescence. J. Am. Chem. Soc. 2005, 127, 8606–8607.CrossRefGoogle Scholar
  29. 29.
    Ruotolo, B. T.; Giles, K.; Campuzano, I.; Sandercock, A. M.; Bateman, R. H.; Robinson, C. V. Evidence for Macromolecular Protein Rings in the Absence of Bulk Water. Science. 2005, 310, 1658–1661.CrossRefGoogle Scholar
  30. 30.
    Benesch, J. L.; Robinson, C. V. Mass spectrometry of Macromolecular Assemblies: Preservation and Dissociation. Curr. Opin. Struct. Biol. 2006, 16, 245–251.CrossRefGoogle Scholar
  31. 31.
    Ruotolo, B. T.; Robinson, C. V. Aspects of Native Proteins are Retained in Vacuum. Curr. Opin. Chem. Biol. 2006, 10, 402–408.CrossRefGoogle Scholar
  32. 32.
    Wortmann, A.; Kistler-Momotova, A.; Zenobi, R.; Heine, M. C.; Wilhelm, O.; Pratsinis, S. E. Shrinking Droplets in Electrospray Ionization and Their Influence on Chemical Equilibria. J. Am. Soc. Mass Spectrom. 2007, 18, 385–393.CrossRefGoogle Scholar
  33. 33.
    Daniel, J. M.; Friess, S. D.; Rajagopalan, S.; Wendt, S.; Zenobi, R. Quantitative Determination of Noncovalent Binding Interactions Using Soft Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2002, 216, 1–27.CrossRefGoogle Scholar
  34. 34.
    Daniel, J. M.; McCombie, G.; Wendt, S.; Zenobi, R. Mass Spectrometric Determination of Association Constants of Adenylate Kinase with Two Noncovalent Inhibitors. J. Am. Soc. Mass Spectrom. 2003, 14, 442–448.CrossRefGoogle Scholar
  35. 35.
    Wendt, S.; McCombie, G.; Daniel, J.; Kienhofer, A.; Hilvert, D.; Zenobi, R. Quantitative Evaluation of Noncovalent Chorismate Mutase-Inhibitor Binding by ESI-MS. J. Am. Soc. Mass Spectrom. 2003, 14, 1470–1476.CrossRefGoogle Scholar
  36. 36.
    Tjernberg, A.; Carno, S.; Oliv, F.; Benkestock, K.; Edlund, P. O.; Griffiths, W. J.; Hallen, D. Determination of Dissociation Constants for Protein-Ligand Complexes by Electrospray Ionization Mass Spectrometry. Anal. Chem. 2004, 76, 4325–4331.CrossRefGoogle Scholar
  37. 37.
    Wortmann, A.; Rossi, F.; Lelais, G.; Zenobi, R. Determination of Zinc to β-Peptide Binding Constants with Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2005, 40, 777–784.CrossRefGoogle Scholar
  38. 38.
    Gabelica, V.; Galic, N.; Rosu, F.; Houssier, C.; De Pauw, E. Influence of Response Factors on Determining Equilibrium Association Constants of Noncovalent Complexes by Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2003, 38, 491–501.CrossRefGoogle Scholar
  39. 39.
    Chitta, R. K.; Rempel, D. L.; Gross, M. L. Determination of Affinity Constants and Response Factors of the Noncovalent Dimer of Gramicidin by Electrospray Ionization Mass Spectrometry and Mathematical Modeling. J. Am. Soc. Mass Spectrom. 2005, 16, 1031–1038.CrossRefGoogle Scholar
  40. 40.
    Daubenfeld, T.; Bouin, A. P.; van der Rest, G. A deconvolution method for the separation of specific versus nonspecific interactions in noncovalent protein-ligand complexes analyzed by ESI-FT-ICR mass spectrometry. J. Am. Soc. Mass Spectrom. 2006, 17, 1239–1248.CrossRefGoogle Scholar
  41. 41.
    Sun, J. X.; Kitova, E. N.; Wang, W. J.; Klassen, J. S. Method for Distinguishing Specific from Nonspecific Protein-Ligand Complexes in Nanoelectrospray Ionization Mass Spectrometry. Anal. Chem. 2006, 78, 3010–3018.CrossRefGoogle Scholar
  42. 42.
    Fukamizo, T. Chitinolytic Enzymes: Catalysis, Substrate Binding, and Their Application. Curr. Protein Pept. Sci. 2000, 1, 105–124.CrossRefGoogle Scholar
  43. 43.
    Dennhart, N.; Letzel, T. Mass Spectrometric Real-Time Monitoring of Enzymatic Glycosidic Hydrolysis, Enzymatic Inhibition, and Enzyme Complexes. Anal. Bioanal. Chem. 2006, 386, 689–698.CrossRefGoogle Scholar
  44. 44.
    Yan, H.; Tsai, M.-D. Mechanism of Enzyme Action, Part A, Vol. 73; John Wiley and Sons: Gainesville, FL, 1999, pp. 103–134.Google Scholar
  45. 45.
    Zhu, X. T.; Kim, J. L.; Newcomb, J. R.; Rose, P. E.; Stover, D. R.; Toledo, L. M.; Zhao, H. L.; Morgenstern, K. A. Structural Analysis of the Lymphocyte-Specific Kinase Lck in Complex with Nonselective and Src Family Selective Kinase Inhibitors. Struct. Folding Design. 1999, 7, 651–661.CrossRefGoogle Scholar
  46. 46.
    Fabian, M. A.; Biggs, W. H.; Treiber, D. K.; Atteridge, C. E.; Azimioara, M. D.; Benedetti, M. G.; Carter, T. A.; Ciceri, P.; Edeen, P. T.; Floyd, M.; Ford, J. M.; Galvin, M.; Gerlach, J. L.; Grotzfeld, R. M.; Herrgard, S.; Insko, D. E.; Insko, M. A.; Lai, A. G.; Lelias, J. M.; Mehta, S. A.; Milanov, Z. V.; Velasco, A. M.; Wodicka, L. M.; Patel, H. K.; Zarrinkar, P. P.; Lockhart, D. J. A Small Molecule-Kinase Interaction Map for Clinical Kinase Inhibitors. Nat. Biotechnol. 2005, 23, 329–336.CrossRefGoogle Scholar
  47. 47.
    Clark, S. M.; Konermann, L. Determination of Ligand-Protein Dissociation Constants by electrospray Mass Spectrometry-Based Diffusion Measurements. Anal. Chem. 2004, 76, 7077–7083.CrossRefGoogle Scholar
  48. 48.
    Imoto, T.; Johnson, L. N.; North, A. C. T.; Phillips, D. C.; Rupley, J. A. Vertebrate Lysozymes, 3rd ed. Academic: New York, 1972; 665–868.Google Scholar
  49. 49.
    Schindler, M.; Assaf, Y.; Sharon, N.; Chipman, D. M. Mechanism of Lysozyme Catalysis—Role of Ground-State Strain in Subsite-D in Hen Egg-White and Human Lysozymes. Biochemistry. 1977, 16, 423–431.CrossRefGoogle Scholar
  50. 50.
    Valentine, S. J.; Anderson, J. G.; Ellington, A. D.; Clemmer, D. E. Disulfide-Intact and -Reduced Lysozyme in the Gas Phase: Conformations and Pathways of Folding and Unfolding. J. Phys. Chem. B. 1997, 101, 3891–3900.CrossRefGoogle Scholar
  51. 51.
    RCSB Protein data bank, e. B.Google Scholar
  52. 52.
    Hunter, C. L.; Mauk, A. G.; Douglas, D. J. Dissociation of Heme from Myoglobin and Cytochrome b(5): Comparison of Behavior in Solution and the Gas Phase. Biochemistry. 1997, 36, 1018–1025.CrossRefGoogle Scholar
  53. 53.
    Rogniaux, H.; Van Dorsselaer, A.; Barth, P.; Biellmann, J. F.; Barbanton, J.; van Zandt, M.; Chevrier, B.; Howard, E.; Mitschler, A.; Potier, N.; Urzhumtseva, L.; Moras, D.; Podjarny, A. Binding of Aldose Reductase Inhibitors: Correlation of Crystallographic and Mass Spectrometric Studies. J. Am. Soc. Mass Spectrom. 1999, 10, 635–647.CrossRefGoogle Scholar
  54. 54.
    Bellinzoni, M.; Haouz, A.; Grana, M.; Munier-Lehmann, H.; Shepard, W.; Alzari, P. M. The Crystal Structure of Mycobacterium tuberculosis Adenylate Kinase in Complex with Two Molecules of ADP and Mg2+ Supports an Associative Mechanism for Phosphoryl Transfer. Protein Sci. 2006, 15, 1489–1493.CrossRefGoogle Scholar
  55. 55.
    Berry, M. B.; Bae, E. Y.; Bilderback, T. R.; Glaser, M.; Phillips, G. N. Crystal Structure of ADP/AMP Complex of Escherichia coli Adenylate Kinase. Proteins Struct. Funct. Bioinformatics. 2006, 62, 555–556.CrossRefGoogle Scholar
  56. 56.
    Kebarle, P. A Brief Overview of the Present Status of the Mechanisms Involved in Electrospray Mass Spectrometry. J. Mass Spectrom. 2000, 35, 804–817.CrossRefGoogle Scholar
  57. 57.
    Peschke, M.; Verkerk, U. H.; Kebarle, P. Features of the ESI Mechanism that Affect the Observation of Multiply Charged Noncovalent Protein Complexes and the Determination of the Association Constant by the Titration Method. J. Am. Soc. Mass Spectrom. 2004, 15, 1424–1434.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Matthias Conradin Jecklin
    • 1
  • David Touboul
    • 1
  • Cédric Bovet
    • 1
  • Arno Wortmann
    • 1
  • Renato Zenobi
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland
  2. 2.Department of Chemistry and Applied BiosciencesETH, Hönggerberg, HCIZurichSwitzerland

Personalised recommendations