Journal of the American Society for Mass Spectrometry

, Volume 18, Issue 12, pp 2218–2225

Salt tolerance of desorption electrospray ionization (DESI)

  • Ayanna U. Jackson
  • Nari Talaty
  • R. Graham Cooks
  • Gary J. Van Berkel
Articles

Abstract

The salt tolerance of desorption electrospray ionization (DESI) was systematically investigated by examining three different drug mixtures in the presence of 0, 0. 2, 2, 5, 10, and 20% NaCl:KCl (1:1) from different surfaces. At physiological salt concentrations, the individual drugs in each mixture were observed in each experiment. Even at salt concentrations significantly above physiological levels, particular surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest in low nanogram amounts. Salt adducts, which are observed even in the absence of added salt, could be eliminated by adding 0. 1% 7 M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated better signal/noise characteristics for DESI. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.

Supplementary material

13361_2011_181202218_MOESM1_ESM.doc (172 kb)
Supplementary material, approximately 176 KB.

References

  1. 1.
    Takats, Z.; Wiseman, J. M.; Cooks, R. G. Ambient Mass Spectrometry Using Desorption Electrospray Ionization (DESI): Instrumentation, Mechanisms and Applications in Forensics, Chemistry, and Biology. J. Mass Spectrom. 2005, 40, 1261–1275.CrossRefGoogle Scholar
  2. 2.
    Cooks, R. G.; Ouyang, Z.; Takats, Z.; Wiseman, J. M. Ambient Mass Spectrometry. Science 2006, 31, 1566–1570.CrossRefGoogle Scholar
  3. 3.
    Kauppila, T. J.; Wiseman, J. M.; Ketola, R. A.; Kotiaho, T.; Cooks, R. G.; Kostiainen, R. Desorption Electrospray Ionization Mass Spectrometry for the Analysis of Pharmaceuticals and Metabolites. Rapid Commun. Mass Spectrom. 2006, 20, 387–392.CrossRefGoogle Scholar
  4. 4.
    Leuthold, L. A.; Mandscheff, J. F.; Fathi, M.; Giroud, C.; Augsburger, M.; Varesio, E.; Hopfgartner, G. Desorption Electrospray Ionization Mass Spectrometry: Direct Toxicological Screening and Analysis of Illicit Ecstasy Tablets. Rapid Commun. Mass Spectrom. 2006, 20, 103–110.CrossRefGoogle Scholar
  5. 5.
    McEwen, C. N.; McKay, R. G.; Larsen, B. S. Analysis of Solids, Liquids, and Biological Tissues Using Solids Probe Introduction at Atmospheric Pressure on Commercial LC/MS Instruments. Anal. Chem. 2005, 77, 7826–7831.CrossRefGoogle Scholar
  6. 6.
    Pan, Z.; Gu, H.; Talaty, N.; Chen, H. W.; Hainline, B. E.; Cooks, R. G.; Raftery, D. Principal Component Analysis of Urine Metabolites Detected by NMR and DESI-MS in Patients with Inborn Errors of Metabolism. Anal. Bioanal. Chem. 2006, 387, 539–549.CrossRefGoogle Scholar
  7. 7.
    Rodriguez-Cruz, S. E. Rapid Analysis of Controlled Substances Using Desorption Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 53–60.CrossRefGoogle Scholar
  8. 8.
    Talaty, N.; Takats, Z.; Cooks, R. G. Rapid In Situ Detection of Alkaloids in Plant Tissue under Ambient Conditions Using Desorption Electrospray Ionization. Analyst 2005, 130, 1624–1633.CrossRefGoogle Scholar
  9. 9.
    Weston, D. J.; Bateman, R.; Wilson, I. D.; Wood, T. R.; Creaser, C. S. Direct Analysis of Pharmaceutical Drug Formulations Using Ion Mobility Spectrometry/Quadrupole-Time-of-Flight Mass Spectrometry Combined with Desorption Electrospray Ionization. Anal. Chem. 2005, 77, 7572–7580.CrossRefGoogle Scholar
  10. 10.
    Annesley, T. M. Ion Suppression in Mass Spectrometry. Clin. Chem. 2003, 49, 1041–1044.CrossRefGoogle Scholar
  11. 11.
    Jessome, L. L.; Volmer, D. A. Ion Suppression: A Major Concern in Mass Spectrometry. LCGC North America 2006, Suppl, 83–89.Google Scholar
  12. 12.
    King, R.; Bonfiglio, R.; Fernandez-Metzler, C.; Miller-Stein, C.; Olah, T. Mechanistic Investigation of Ionization Suppression in Electrospray Ionization. J. Am. Soc. Mass Spectrom. 2000, 11, 942–950.CrossRefGoogle Scholar
  13. 13.
    Iribarne, J. V.; Thomson, B. A. On the Evaporation of Small Ions from Charged Droplets. J. Chem. Phys. 1976, 64, 2287–2294.CrossRefGoogle Scholar
  14. 14.
    Iavarone, A. T.; Udekwu, O. A.; Williams, E. R. Buffer Loading for Counteracting Metal Salt-Induced Signal Suppression in Electrospray Ionization. Anal. Chem. 2004, 76, 3944–3950.CrossRefGoogle Scholar
  15. 15.
    Chen, H. W.; Talaty, N. N.; Takats, Z.; Cooks, R. G. Desorption Electrospray Ionization Mass Spectrometry for High-Throughput Analysis of Pharmaceutical Samples in the Ambient Environment. Anal. Chem. 2005, 77, 6915–6927.CrossRefGoogle Scholar
  16. 16.
    Cotte-Rodriguez, I.; Takats, Z.; Talaty, N.; Chen, H. W.; Cooks, R. G. Desorption Electrospray Ionization of Explosives on Surfaces: Sensitivity and Selectivity Enhancement by Reactive Desorption Electrospray Ionization. Anal. Chem. 2005, 77, 6755–6764.CrossRefGoogle Scholar
  17. 17.
    D’Agostino, P. A.; Hancock, J. R.; Chenier, C. L.; Lepage, C. R. J. Liquid Chromatography Electrospray Tandem Mass Spectrometric and Desorption Electrospray Ionization Tandem Mass Spectrometric Analysis of Chemical Warfare Agents in Office Media Typically Collected During a Forensic Investigation. J. Chromatogr. A 2006, 1110, 86–94.CrossRefGoogle Scholar
  18. 18.
    Gu, H.; Chen, H.; Pan, Z.; Jackson, A. U.; Talaty, N.; Xi, B.; Kissinger, C.; Duda, C.; Mann, D.; Raftery, D.; Cooks, R. G. Monitoring Diet Effects from Biofluids and Their Implications for Metabolomics Studies. Anal. Chem. 2006, 79, 89–97.CrossRefGoogle Scholar
  19. 19.
    Williams, J. P.; Scrivens, J. H. Rapid Accurate Mass Desorption Electrospray Ionization Tandem Mass Spectrometry of Pharmaceutical Samples. Rapid Commun. Mass Spectrom. 2005, 19, 3643–3650.CrossRefGoogle Scholar
  20. 20.
    Chen, H.; Cotte-Rodriguez, I.; Cooks, R. G. Cis-Diol Functional Group Recognition by Reactive Desorption Electrospray Ionization (DESI). Chem. Commun. 2006, 6, 597–599.CrossRefGoogle Scholar
  21. 21.
    Nyadong, L.; Newton, P. N.; Green, M. D.; De Jesus, V.; Fernandez, F. M. Reactive Desorption Electrospray Ionization Mass Spectrometry for High-Throughput Screening of Essential Antimalarials. In: Proceedings of the 58th Southeast Regional Meeting of the American Chemical Society, Augusta, GA, 2006.Google Scholar
  22. 22.
    Jackson, A. T.; Williams, J. P.; Scrivens, J. H. Desorption Electrospray Ionization Mass Spectrometry and Tandem Mass Spectrometry of Low-Molecular-Weight Synthetic Polymers. Rapid Commun. Mass Spectrom. 2006, 20, 2717–2727.CrossRefGoogle Scholar
  23. 23.
    Kauppila, T. J.; Talaty, N.; Kuuranne, T.; Kotiaho, T.; Kostiainen, R.; Cooks, R. G. Rapid Analysis of Metabolites and Drugs of Abuse from Urine Samples by Desorption Electrospray Ionization-Mass Spectrometry. Analyst 2006, 132, 868–875.CrossRefGoogle Scholar
  24. 24.
    Henry, R. J. Clinical Chemistry Principles and Technics; Harper & Row Publishers: New York, 1964.Google Scholar
  25. 25.
    Cone, E. J. Saliva Testing for Drugs of Abuse. Ann. N. Y. Acad. Sci. 1993, 694, 91–127.CrossRefGoogle Scholar
  26. 26.
    Rooka, E. J.; Hillebrand, M. J. X.; Rosing, H.; van Reeb, J. M.; Beijnen, J. H. The Quantitative Analysis of Heroin, Methadone and Their Metabolites and the Simultaneous Detection of Cocaine, Acetylcodeine and Their Metabolites in Human Plasma by High-Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry. J. Chromatogr. B 2005, 824, 213–221.CrossRefGoogle Scholar
  27. 27.
    Iwai, M.; Hattori, H.; Arinobu, T.; Ishii, A.; Kumazawa, T.; Noguchi, H.; Noguchi, H.; Suzuki, O.; Seno, H. Simultaneous Determination of Barbiturates in Human Biological Fluids by Direct Immersion Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry. J. Chromatogr. B 2004, 806, 65–73.CrossRefGoogle Scholar
  28. 28.
    Hummel, D.; Löffler, D.; Fink, G.; Ternes, T. A. Simultaneous Determination of Psychoactive Drugs and Their Metabolites in Aqueous Matrices by Liquid Chromatography Mass Spectrometry. Environ. Sci. Technol. 2006, 40, 7321–7328.CrossRefGoogle Scholar
  29. 29.
    Smyth, W. F.; McClean, S.; Ramachandran, V. N. A Study of the Electrospray Ionization of Pharmacologically Significant 1,4-Benzodiazepines and Their Subsequent Fragmentation Using an Ion-Trap Mass Spectrometer. Rapid Commun. Mass Spectrom. 2000, 14, 2061–2069.CrossRefGoogle Scholar
  30. 30.
    Wang, J.; Shen, X.; Fenyk-Melody, J.; Pivnichny, J. V.; Tong, X. Simple and Sensitive Liquid Chromatography/Tandem Mass Spectrometry Method for the Determination of Diazepam and Its Major Metabolites in Rat Cerebrospinal Fluid. Rapid Commun. Mass Spectrom. 2003, 17, 519–525.CrossRefGoogle Scholar
  31. 31.
    Chen, H. W.; Pan, Z. Z.; Talaty, N.; Raftery, D.; Cooks, R. G. Combining Desorption Electrospray Ionization Mass Spectrometry and Nuclear Magnetic Resonance for Differential Metabolomics without Sample Preparation. Rapid Commun. Mass Spectrom. 2006, 20, 1577–1584.CrossRefGoogle Scholar
  32. 32.
    Guo, X.; Bruist, M. F.; Davis, D. L.; Bentzley, C. M. Secondary Structural Characterization of Oligonucleotide Strands Using Electrospray Ionization Mass Spectrometry. Nucleic Acids Res. 2005, 33, 3659–3666.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  • Ayanna U. Jackson
    • 1
  • Nari Talaty
    • 1
  • R. Graham Cooks
    • 1
  • Gary J. Van Berkel
    • 2
  1. 1.Department of ChemistryPurdue University and Bindley Bioscience Center, Discovery Park at Purdue UniversityWest LafayetteUSA
  2. 2.Organic and Biological Mass Spectrometry GroupOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations