Advertisement

High surface area of porous silicon drives desorption of intact molecules

  • Trent R. Northen
  • Hin-Koon Woo
  • Michael T. Northen
  • Anders Nordström
  • Winnie Uritboonthail
  • Kimberly L. Turner
  • Gary Siuzdak
Short Communication

Abstract

The surface structure of porous silicon used in desorption/ionization on porous silicon (DIOS) mass analysis is known to play a primary role in the desorption/ionization (D/I) process. In this study, mass spectrometry and scanning electron microscopy (SEM) are used to examine the correlation between intact ion generation with surface ablation and surface morphology. The DIOS process is found to be highly laser energy dependent and correlates directly with the appearance of surface ions (Si n + and OSiH+). A threshold laser energy for DIOS is observed (10 mJ/cm2), which supports that DIOS is driven by surface restructuring and is not a strictly thermal process. In addition, three DIOS regimes are observed that correspond to surface restructuring and melting. These results suggest that higher surface area silicon substrates may enhance DIOS performance. A recent example that fits into this mechanism is the surface of silicon nanowires, which has a high surface energy and concomitantly requires lower laser energy for analyte desorption.

Keywords

Porous Silicon Porous Silicon Surface Ylamine Hydro Fluoric Aser Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wei, J.; Buriak, J. M.; Siuzdak, G. Desorption-Ionization Mass Spectrometry on Porous Silicon. Nature. 1999, 399, 243–246.CrossRefGoogle Scholar
  2. 2.
    Karas, M.; Bahr, U.; Ingendoh, A.; Nordhoff, E.; Stahl, B.; Strupat, K.; Hillenkamp, F. Principles and Applications of Matrix-Assisted UV Laser Desorption Ionization Mass-Spectrometry. Anal. Chim. Acta. 1990, 241, 175–185.CrossRefGoogle Scholar
  3. 3.
    Karas, M.; Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons. Anal. Chem. 1988, 60, 2299–2301.CrossRefGoogle Scholar
  4. 4.
    Pachuta, S. J.; Cooks, R. G. Mechanisms in Molecular Sims. Chem. Rev. 1987, 87, 647–669.CrossRefGoogle Scholar
  5. 5.
    Kruse, R. A.; Li, X. L.; Bohn, P. W.; Sweedler, J. V. Experimental Factors Controlling Analyte Ion Generation in Laser Desorption/Ionization Mass Spectrometry on Porous Silicon. Anal. Chem. 2001, 73, 3639–3645.CrossRefGoogle Scholar
  6. 6.
    Ren, S. F.; Zhang, L.; Cheng, Z. H.; Guo, Y. L. Immobilized Carbon Nanotubes as Matrix for MALDI-TOF-MS Analysis: Applications to Neutral Small Carbohydrates. J. Am. Soc. Mass Spectrom. 2005, 16, 333–339.CrossRefGoogle Scholar
  7. 7.
    Go, E. P.; Apon, J. V.; Luo, G.; Saghatelian, A.; Daniels, R. H.; Sahi, V.; Dubrow, R.; Cravatt, B. F.; Vertes, A.; Siuzdak, G. Desorption/Ionization on Silicon Nanowires. Anal. Chem. 2005, 77, 1641–1646.CrossRefGoogle Scholar
  8. 8.
    Luo, G. H.; Chen, Y.; Daniels, H.; Dubrow, R.; Vertes, A. Internal Energy Transfer in Laser Desorption/Ionization from Silicon Nanowires. J. Phys. Chem. B. 2006, 110, 13381–13386.CrossRefGoogle Scholar
  9. 9.
    Okuno, S.; Arakawa, R.; Okamoto, K.; Matsui, Y.; Seki, S.; Kozawa, T.; Tagawa, S.; Wada, Y. Requirements for Laser-induced Desorption/Ionization on Submicrometer Structures. Anal. Chem. 2005, 77, 5364–5369.CrossRefGoogle Scholar
  10. 10.
    Lewis, W. G.; Shen, Z. X.; Finn, M. G.; Siuzdak, G. Desorption/Ionization on Silicon (DIOS) Mass Spectrometry: Background and Applications. Int. J. Mass Spectrom. 2003, 226, 107–116.CrossRefGoogle Scholar
  11. 11.
    Trauger, S. A.; Go, E. P.; Shen, Z. X.; Apon, J. V.; Compton, B. J.; Bouvier, E. S. P.; Finn, M. G.; Siuzdak, G. High Sensitivity and Analyte Capture with Desorption/Ionization Mass Spectrometry on Silylated Porous Silicon. Anal. Chem. 2004, 76, 4484–4489.CrossRefGoogle Scholar
  12. 12.
    Peterson, D. S. Matrix-free Methods for Laser Desorption/Ionization Mass Spectrometry. Mass Spectrom. Rev. 2007, 26, 19–34.CrossRefGoogle Scholar
  13. 13.
    Herino, R.; Perio, A.; Bomchil, G. Microstructure of Porous Silicon and Its Evolution with Temperature. Mater. Lett. 1984, 2, 519–523.CrossRefGoogle Scholar
  14. 14.
    Broughton, J. Q.; Li, X. P. Phase Diagram of Silicon by Molecular Dynamics. Phys. Rev. B. 1987, 35, 9120–9127.CrossRefGoogle Scholar
  15. 15.
    Timoshenko, V. Y.; Dittrich, T.; Sieber, I.; Rappich, J.; Kamenev, B. V.; Kashkarov, P. K. Laser-induced Melting of Porous Silicon. Physica Status Solidi A Appl. Res. 2000, 182, 325–330.CrossRefGoogle Scholar
  16. 16.
    Luo, G. H.; Chen, Y.; Siuzdak, G.; Vertes, A. Surface Modification and Laser Pulse Length Effects on Internal Energy Transfer in DIOS. J. Phys. Chem. B. 2005, 109, 24450–24456.CrossRefGoogle Scholar
  17. 17.
    Nakajima, A.; Itakura, T.; Watanabe, S.; Nakayama, N. Photoluminescence of Porous Si, Oxidized Then Deoxidized Chemically. Appl. Phys. Lett. 1992, 61, 46–48.CrossRefGoogle Scholar
  18. 18.
    Collins, R. T.; Tischler, M. A.; Stathis, J. H. Photoinduced Hydrogen Loss from Porous Silicon. Appl. Phys. Lett. 1992, 61, 1649–1651.CrossRefGoogle Scholar
  19. 19.
    Pusel, A.; Wetterauer, U.; Hess, P. Photochemical Hydrogen Desorption from H-terminated Silicon(111) by VUV Photons. Phys. Rev. Lett. 1998, 81, 645–648.CrossRefGoogle Scholar
  20. 20.
    Hamilton, B. Porous Silicon. Semiconduct. Sci. Technol. 1995, 10, 1187–1207.CrossRefGoogle Scholar
  21. 21.
    Shen, Z.; Thomas, J. J.; Averbuj, C.; Broo, K. M.; Engelhard, M.; Crowell, J. E.; Finn, M. G.; Siuzdak, G. Porous Silicon as a Versatile Platform for Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2001, 73, 612–619.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  • Trent R. Northen
    • 1
  • Hin-Koon Woo
    • 1
  • Michael T. Northen
    • 2
  • Anders Nordström
    • 1
  • Winnie Uritboonthail
    • 1
  • Kimberly L. Turner
    • 2
  • Gary Siuzdak
    • 1
  1. 1.Center for Mass SpectrometryThe Scripps Research InstituteLa Jolla
  2. 2.Department of Mechanical EngineeringUniversity of California at Santa BarbaraSanta BarbaraUSA

Personalised recommendations