Journal of the American Society for Mass Spectrometry

, Volume 18, Issue 11, pp 1932–1944

Quantitative comparison of IMAC and TiO2 surfaces used in the study of regulated, dynamic protein phosphorylation

  • Xiquan Liang
  • Geir Fonnum
  • Mahbod Hajivandi
  • Torkel Stene
  • Nini H. Kjus
  • Erlend Ragnhildstveit
  • Joseph W. Amshey
  • Paul Predki
  • R. Marshall Pope
Articles

Abstract

Protein phosphorylation regulates many aspects of cellular function, including cell proliferation, migration, and signal transduction. An efficient strategy to isolate phosphopeptides from a pool of unphosphorylated peptides is essential to global characterization using mass spectrometry. We describe an approach employing isotope tagging reagents for relative and absolute quantification (iTRAQ) labeling to compare quantitatively commercial and prototypal immobilized metal affinity chelate (IMAC) and metal oxide resins. Results indicate a prototype iron chelate resin coupled to magnetic beads outperforms either the Ga3+-coupled analog, Fe3+, or Ga3+-loaded, iminodiacetic acid (IDA)-coated magnetic particles, Ga3+-loaded Captivate beads, Fe3+-loaded Poros 20MC, or zirconium-coated ProteoExtract magnetic beads. For example, compared with Poros 20MC, the magnetic metal chelate (MMC) studied here improved phosphopeptide recovery by 20% and exhibited 60% less contamination from unphosphorylated peptides. With respect to efficiency and contamination, MMC performed as well as prototypal magnetic metal oxide-coated (TiO2) beads (MMO) or TiO2 chromatographic spheres, even if the latter were used with 2,5-dihydroxybenzoic acid (DHB) procedures. Thus far, the sensitivity of the new prototypes reaches 50 fmol, which is comparable to TiO2 spheres. In an exploration of natural proteomes, tryptic (phospho)peptides captured from stable isotopic labeling with amino acids in cell culture (SILAC)-labeled immunocomplexes following EGF-treatment of 5 × 107 HeLa cells were sufficient to quantify stimulated response of over 60 proteins and identify 20 specific phosphorylation sites.

Supplementary material

13361_2011_181101932_MOESM1_ESM.ppt (1.3 mb)
Supplementary material, approximately 1343 KB.

References

  1. 1.
    Tao, W. A.; Wollscheid, B.; Brien, R. O.; Eng, J. K. Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry. Nature Methods. 2005, 2, 591–598.CrossRefGoogle Scholar
  2. 2.
    McLachlin, D. T.; Chait, B. T. Improved β-elimination-based affinity purification strategy for enrichment of phosphopeptides. Anal. Chem. 2003, 75, 6826–6836.CrossRefGoogle Scholar
  3. 3.
    Thaler, F.; Valsasina, B.; Baldi, R.; Xie, J. A new approach to phosphoserine and phosphothreonine analysis in peptides and proteins: Chemical modification, enrichment via solid-phase reversible binding, and analysis by mass spectrometry. Anal. Bioanal. Chem. 2003, 376, 366–373.Google Scholar
  4. 4.
    Thompson, A. J.; Hart, S. R.; Franz, C.; Barnouin, K.; Ridley, A.; Cramer, R. Characterization of protein phosphorylation by mass spectrometry using immobilized metal ion affinity chromatography with on-resin β-elimination and Michael addition. Anal. Chem. 2003, 75, 3232–3243.CrossRefGoogle Scholar
  5. 5.
    Qian, W. J.; Goshe, M. B.; Camp, D. G.; Yu, L. R.; Tang, K.; Smith, R. D. Phosphoprotein isotope-coded solid-phase tag approach for enrichment and quantitative analysis of phosphopeptides from complex mixtures. Anal. Chem. 2003, 75, 5441–5450.CrossRefGoogle Scholar
  6. 6.
    Posewitz, M. C.; Tempst, P. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal. Chem. 1999, 71, 2883–2892.CrossRefGoogle Scholar
  7. 7.
    Ficarro, S. B.; McCleland, M. L.; Stukenberg, P. T.; Burke, D. J.; Ross, M. M.; Shabanowitz, J.; Hunt, D. F.; White, F. M. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 2002, 20, 301–315.CrossRefGoogle Scholar
  8. 8.
    Kokubu, M.; Ishihama, Y.; Sato, T.; Nagasu, T.; Oda, Y. Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Anal. Chem. 2005, 77, 5144–5154.CrossRefGoogle Scholar
  9. 9.
    Nuhse, T. S.; Stensballe, A.; Jensen, O. N.; Peck, S. C. Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol. Cell. Proteom. 2003, 2, 1234–1243.CrossRefGoogle Scholar
  10. 10.
    Shu, H.; Chen, S.; Bi, Q.; Mumby, M.; Brekken, D. L. Identification of phosphoproteins and their phosphorylation sites in the WEHI-231 B lymphoma cell line. Mol. Cell. Proteom. 2004, 3, 279–286.CrossRefGoogle Scholar
  11. 11.
    Pinkse, M. W.; Uitto, P. M.; Hilhorst, M. J.; Ooms, B.; Heck, A. J. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem. 2004, 76, 3935–3943.CrossRefGoogle Scholar
  12. 12.
    Larsen, M. R.; Thingholm, T. E.; Jensen, O. N.; Roepstorff, P.; Jorgensen, T. J. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteom. 2005, 4, 873–886.CrossRefGoogle Scholar
  13. 13.
    Kweon, H. K.; Hakansson, K. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal. Chem. 2006, 78, 1743–1749.CrossRefGoogle Scholar
  14. 14.
    Lim, K. B.; Kassel, D. B. Phosphopeptide enrichment using on-line two-dimensional strong cation exchange followed by reversed-phase liquid chromatography/mass spectrometry. Anal. Biochem. 2006, 354, 213–219.CrossRefGoogle Scholar
  15. 15.
    Beausoleil, S. A.; Jedrychowski, M.; Schwartz, D.; Elias, J. E.; Villen, J.; Li, J.; Cohn, M. A.; Cantley, L. C.; Gygi, S. P. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12130–12135.CrossRefGoogle Scholar
  16. 16.
    Zhou, H.; Watts, J. D.; Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol. 2001, 19, 375–378..CrossRefGoogle Scholar
  17. 17.
    Tao, W. A. Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry. Nat. Methods. 2005, 2, 591–598.CrossRefGoogle Scholar
  18. 18.
    Pandey, A.; Podtelejnikov, A. V.; Blagoev, B.; Bustelo, X. R.; Mann, M.; Lodish, H. F. Analysis of receptor signaling pathways by mass spectrometry: Identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 179–184.CrossRefGoogle Scholar
  19. 19.
    Blagoev, B.; Kratchmarova, I.; Ong, S. E.; Nielsen, M.; Foster, L. J.; Mann, M. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat. Biotechnol. 2003, 21, 315–318.CrossRefGoogle Scholar
  20. 20.
    Blagoev, B.; Ong, S. E.; Kratchmarova, I.; Mann, M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol. 2004, 22, 1139–1145.CrossRefGoogle Scholar
  21. 21.
    Salomon, A. R.; Ficarro, S. B.; Brill, L. M.; Brinker, A.; Phung, Q. T.; Ericson, C.; Sauer, K.; Brock, A.; Horn, D. M.; Schultz, P. G.; Peters, E. C. Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 443–448.CrossRefGoogle Scholar
  22. 22.
    Rush, J.; Moritz, A.; Lee, K. A.; Guo, A.; Goss, V. L.; Spek, E. J.; Zhang, H.; Zha, X. M.; Polakiewicz, R. D.; Comb, M. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. J. Nat. Biotechnol. 2005, 23, 94–101.CrossRefGoogle Scholar
  23. 23.
    Zhang, Y.; Wolf-Yadlin, A.; Ross, P. L.; Pappin, D. J.; Rush, J.; Lauffenburger, D. A.; White, F. M. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol. Cell. Proteom. 2005, 4, 1240–1250.CrossRefGoogle Scholar
  24. 24.
    Gembitsky, D. S.; Lawlor, K.; Jacovina, A.; Yaneva, M.; Tempst, P. A prototype antibody microarray platform to monitor changes in protein tyrosine phosphorylation. Mol. Cell. Proteom. 2004, 3, 1102–1118.CrossRefGoogle Scholar
  25. 25.
    Affolter, M.; Watts, J. D.; Krebs, D. L.; Aebersold, R. Evaluation of two-dimensional phosphopeptide maps by electrospray ionization mass spectrometry of recovered peptides. Anal. Biochem. 1994, 223, 74–81.CrossRefGoogle Scholar
  26. 26.
    Salim, K.; Kehoe, L.; Minkoff, M. S.; Bilsland, J. G.; Munoz-Sanjuan, I.; Guest, P. C. Identification of differentiating neural progenitor cell markers using shotgun isobaric tagging mass spectrometry. Stem. Cells Dev. 2006, 15, 461–470.CrossRefGoogle Scholar
  27. 27.
    Sachon, E.; Mohammed, S.; Bache, N.; Jensen, O. N. Phosphopeptide quantitation using amine-reactive isobaric tagging reagents and tandem mass spectrometry: Application to proteins isolated by gel electrophoresis. Rapid Commun. Mass Spectrom. 2006, 20, 1127–1134.CrossRefGoogle Scholar
  28. 28.
    Ong, S. E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; Mann, M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteom. 2002, 1, 376–386.CrossRefGoogle Scholar
  29. 29.
    Liang, X.; Hajivandi, M.; Veach, D.; Wisniewski, D.; Clarkson, B.; Resh, M. D.; Pope, R. M. Quantification of change in phosphorylation of BCR-ABL kinase and its substrates in response to Imatinib treatment in human chronic myelogenous leukemia cells. Proteomics. 2006, 6, 4554–4564.CrossRefGoogle Scholar
  30. 30.
    Bodenmiller, B.; Mueller, L. N.; Mueller, M.; Domon, B.; Aebersold, R. Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat. Methods. 2007, 4, 231–237.CrossRefGoogle Scholar
  31. 31.
    Larsen, M. R.; Graham, M. E.; Robinson, P. J.; Roepstorff, P. Improved detection of hydrophilic phosphopeptides using graphite powder microcolumns and mass spectrometry: Evidence for in vivo doubly phosphorylated dynamin I and dynamin III. Mol. Cell. Proteom. 2004, 3, 4564–4565.CrossRefGoogle Scholar
  32. 32.
    Boeri Erba, E.; Bergatto, E.; Cabodi, S.; Silengo, L.; Tarone, G.; Defilippi, P.; Jensen, O. N. Systematic analysis of the epidermal growth factor receptor by mass spectrometry reveals stimulation-dependent multisite phosphorylation. Mol. Cell. Proteom. 2005, 4, 1107–1121.CrossRefGoogle Scholar
  33. 33.
    Bose, R.; Molina, H.; Patterson, A. S.; Bitok, J. K.; Periaswamy, B.; Bader, J. S.; Pandey, A.; Cole, P. A. Phosphoproteomic analysis of Her2/neu signaling and inhibition. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 9773–9778.CrossRefGoogle Scholar
  34. 34.
    Ibarrola, N.; Kalume, D. E.; Gronborg, M.; Iwahori, A.; Pandey, A. A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture. Anal. Chem. 2003, 75, 6043–6049.CrossRefGoogle Scholar
  35. 35.
    Ibarrola, N.; Molina, H.; Iwahori, A.; Pandey, A. A novel proteomic approach for specific identification of tyrosine kinase substrates using [13C]tyrosine. J. Biol. Chem. 2004, 279, 15805–15813.CrossRefGoogle Scholar
  36. 36.
    Zhang, G.; Spellman, D. S.; Skolnik, E. Y.; Neubert, T. A. Quantitative phosphotyrosine proteomics of EphB2 signaling by stable isotope labeling with amino acids in cell culture (SILAC). J. Proteome Res. 2006, 5, 581–588.CrossRefGoogle Scholar
  37. 37.
    Liang, X.; Zhao, J.; Hajivandi, M.; Wu, R.; Tao, J.; Amshey, J. W.; Pope, R. M. Quantification of membrane and membrane-bound proteins in normal and malignant breast cancer cells isolated from the same patient with primary breast carcinoma. J. Proteome Res. 2006, 5, 2632–2641.CrossRefGoogle Scholar
  38. 38.
    Zhang, G.; Neubert, T. A. Automated comparative proteomics based on multiplex tandem mass spectrometry and stable isotope labeling. Mol. Cell. Proteom. 2006, 5, 401–411.CrossRefGoogle Scholar
  39. 39.
    Zhang, Y.; Wolf-Yadlin, A.; Ross, P. L.; Pappin, D. J.; Rush, J.; Lauffenburger, D. A.; White, F. M. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol. Cell. Proteom. 2005, 4, 1240–1250.CrossRefGoogle Scholar
  40. 40.
    Ignatiuk, A.; Quickfall, J. P.; Hawrysh, A. D.; Chamberlain, M. D.; Anderson, D. H. The smaller isoforms of ankyrin 3 bind to the p85 subunit of phosphatidylinositol 3′-kinase and enhance platelet-derived growth factor receptor down-regulation. J. Biol. Chem. 2006, 281, 5956–5964.CrossRefGoogle Scholar
  41. 41.
    Ghosh, S.; Cox, J. V. Dynamics of ankyrin-containing complexes in chicken embryonic erythroid cells: Role of phosphorylation. Mol. Biol. Cell. 2001, 12, 3864–3874.CrossRefGoogle Scholar
  42. 42.
    Cianci, C. D.; Giorgi, M.; Morrow, J. S. Phosphorylation of ankyrin down-regulates its cooperative interaction with spectrin and protein 3. J. Cell. Biochem. 1988, 37, 301–315.CrossRefGoogle Scholar
  43. 43.
    White, I. J.; Bailey, L. M.; Aghakhani, M. R.; Moss, S. E.; Futter, C. E. EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J. 2006, 25, 1–12.CrossRefGoogle Scholar
  44. 44.
    Salles, J. P.; Netelenbos, J. C.; Slootweg, M. C. Growth hormone induces tyrosine phosphorylation of annexin I in rat osteosarcoma cells. Endocrinology. 1996, 137, 4358–4362.Google Scholar
  45. 45.
    Futter, C. E.; Felder, S.; Schlessinger, J.; Ullrich, A.; Hopkins, C. R. Annexin I is phosphorylated in the multivesicular body during the processing of the epidermal growth factor receptor. J. Cell. Biol. 1993, 120, 77–83.CrossRefGoogle Scholar
  46. 46.
    Tashiro, K.; Konishi, H.; Sano, E.; Nabeshi, H.; Yamauchi, E.; Taniguchi, H. Suppression of the ligand-mediated down-regulation of epidermal growth factor receptor by Ymer, a novel tyrosine-phosphorylated and ubiquitinated protein. J. Biol. Chem. 2006, 281, 24612–24622.CrossRefGoogle Scholar
  47. 47.
    Hayashi, H.; Matsuzaki, O.; Muramatsu, S.; Tsuchiya, Y.; Harada, T.; Suzuki, Y.; Sugano, S.; Matsuda, A.; Nishida, E. Centaurin-α1 is a phosphatidylinositol 3-kinase-dependent activator of ERK1/2 mitogen-activated protein kinases. J. Biol. Chem. 2006, 281, 1332–1337.CrossRefGoogle Scholar
  48. 48.
    Graziotto, R.; Foresta, C.; Scannapieco, P.; Zeilante, P.; Russo, A.; Negro, A.; Salmaso, R.; Onisto, M. cDNA cloning and characterization of PD1: A novel human testicular protein with different expressions in various testiculopathies. Exp. Cell. Res. 1999, 248, 620–626.CrossRefGoogle Scholar
  49. 49.
    Stacey, T. T. I.; Nie, Z.; Stewart, A.; Najdovska, M.; Hall, N. E.; He, H.; Randazzo, P. A.; Lock, P. ARAP3 is transiently tyrosine phosphorylated in cells attaching to fibronectin and inhibits cell spreading in a RhoGAP-dependent manner. J. Cell. Sci. 2004, 117, 6071–6084.CrossRefGoogle Scholar
  50. 50.
    Chen, H.; Slepnev, V. I.; Di Fiore, P. P.; De Camilli, P. The interaction of epsin and Eps15 with the clathrin adaptor AP-2 is inhibited by mitotic phosphorylation and enhanced by stimulation-dependent dephosphorylation in nerve terminals. J. Biol. Chem. 1999, 274, 3257–3260.CrossRefGoogle Scholar
  51. 51.
    Countaway, J. L.; McQuilkin, P.; Girones, N.; Davis, R. J. Multisite phosphorylation of the epidermal growth factor receptor: Use of site-directed mutagenesis to examine the role of serine/threonine phosphorylation. J. Biol. Chem. 1990, 265, 3407–3416.Google Scholar
  52. 52.
    Huang, F.; Kirkpatrick, D.; Jiang, X.; Gygi, S.; Sorkin, A. Differential regulation of EGF receptor internalization and degradation by multi-ubiquitination within the kinase domain. Mol. Cell. 2006, 21, 737–748.CrossRefGoogle Scholar
  53. 53.
    Moser, K.; White, F. M. Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS. J. Proteome Res. 2006, 5, 98–104.CrossRefGoogle Scholar
  54. 54.
    Kokubu, M.; Ishihama, Y.; Sato, T.; Nagasu, T.; Oda, Y. Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Anal. Chem. 2005, 77, 5144–5154.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  • Xiquan Liang
    • 1
  • Geir Fonnum
    • 1
  • Mahbod Hajivandi
    • 1
  • Torkel Stene
    • 1
  • Nini H. Kjus
    • 1
  • Erlend Ragnhildstveit
    • 1
  • Joseph W. Amshey
    • 1
  • Paul Predki
    • 1
  • R. Marshall Pope
    • 1
  1. 1.Protein Analysis, R and D DepartmentInvitrogen CorporationCarlsbadUSA

Personalised recommendations