Journal of the American Society for Mass Spectrometry

, Volume 18, Issue 11, pp 1901–1908

Simple template-based method to produce bradbury-nielsen gates

  • Oh Kyu Yoon
  • Ignacio A. Zuleta
  • Matthew D. Robbins
  • Griffin K. Barbula
  • Richard N. Zare


A Bradbury-Nielsen gate (BNG) consists of two interleaved and electrically isolated sets of wires and can transmit or deflect charged particles by applying a varying voltage difference across the two wire sets. We present a simple template-based method to fabricate BNGs with wire spacings as small as 50 µm with minimal use of a microscope. The small wire spacing allows modulation rates at tens of megahertz. Using this method, we have fabricated four BNGs with wire spacings of 500, 200, 100, and 50 µm using 10 µm gold-coated tungsten wires. The performance of the four BNGs is characterized using an imaging detector and compared with theoretical predictions.

Supplementary material

13361_2011_181101901_MOESM1_ESM.pdf (664 kb)
Supplementary material, approximately 680 KB.


  1. 1.
    Yoon, O. K.; Zuleta, I. A.; Kimmel, J. R.; Robbins, M. D.; Zare, R. N. Duty Cycle and Modulation Efficiency of Two-Channel Hadamard Transform Time-of-Flight Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2005, 16, 1888–1901.CrossRefGoogle Scholar
  2. 2.
    Loeb, L. B. Basic Processes of Gaseous Electronics; University of California Berkeley: Berkeley, CA, 1961.Google Scholar
  3. 3.
    Cravath, A. M. The Rate of Formation of Negative Ions by Electron Attachment. Phys. Rev. 1929, 33, 605–613.CrossRefGoogle Scholar
  4. 4.
    Bradbury, N. E.; Nielsen, R. A. Absolute Values of the Electron Mobility in Hydrogen. Phys. Rev. 1936, 49, 388–393.CrossRefGoogle Scholar
  5. 5.
    Weinkauf, R.; Walter, K.; Weickhart, C.; Boesl, U.; Schlag, E. W. Laser Tandem Mass Spectrometry in a Time of Flight Instrument. Naturforsch Teil A. 1989, 44, 1219–1225.Google Scholar
  6. 6.
    Beussman, D. J.; Vlasak, P. R.; McLane, R. D.; Seeterlin, M. A.; Enke, C. G. Tandem Reflectron Time-of-Flight Mass Spectrometer Utilizing Photodissociation. Anal. Chem. 1995, 67, 3952–3957.CrossRefGoogle Scholar
  7. 7.
    Vlasak, P. R.; Beussman, D. J.; Davenport, M. R.; Enke, C. G. An Interleaved Comb Ion Deflection Gate for m/z Selection in Time-of-Flight Mass Spectrometry. Rev. Sci. Instrum. 1996, 67, 68–72.CrossRefGoogle Scholar
  8. 8.
    Fernandez, F. M.; Smith, L. L.; Kuppannan, K.; Yang, X.; Wysocki, V. H. Peptide Sequencing Using a Patchwork Approach and Surface-Induced Dissociation in Sector-TOF and Dual Quadrupole Mass Spectrometers. J. Am. Soc. Mass Spectrom. 2003, 14, 1387–1401.CrossRefGoogle Scholar
  9. 9.
    Li, J.; Taraszka, J. A.; Counterman, A. E.; Clemmer, D. E. Influence of Solvent Composition and Capillary Temperature on the Conformations of Electrosprayed Ions: Unfolding of Compact Ubiquitin Conformers from Pseudo-Native and Denatured Solutions. Int. J. Mass Spectrom. 1999, 187, 37–47.CrossRefGoogle Scholar
  10. 10.
    Baumbach, J. I.; Pilzecker, P.; Trindade, E. Monitoring of Circuit Breakers using Ion Mobility Spectrometry to Detect SF6-Decomposition. Int. J. Ion Mobility Spectrom. 1999, 2, 35–39.Google Scholar
  11. 11.
    Jarvis, G. K.; Peverall, P.; Mayhew, C. A. A Novel Use of an Ion-Mobility Mass Spectrometer for the Investigation of Electron Attachment to Molecules. J. Phys. Chem. B. 1996, 29, L713-L718.Google Scholar
  12. 12.
    Ashbury, G. R.; Hill, H. H. Negative Ion Electrospray Ionization Ion Mobility Spectrometry. Int. J. Ion Mobility Spectrom. 1999, 2, 1–8.Google Scholar
  13. 13.
    Clowers, B. H.; Hill, H. H. Mass Analysis of Mobility-Selected Ion Populations Using Dual Gate, Ion Mobility, Quadrupole Ion Trap Mass Spectrometry. Anal. Chem. 2005, 77, 5877–5885.CrossRefGoogle Scholar
  14. 14.
    Brock, A.; Rodriguez, N.; Zare, R. N. Characterization of a Hadamard Transform Time-of-Flight Mass spectrometer. Rev. Sci. Instrum. 2000, 71, 1306–1318.CrossRefGoogle Scholar
  15. 15.
    Zare, R. N.; Fernandez, F. M.; Kimmel, J. R. Hadamard Transform Time-of-Flight Mass Spectrometry: More Signal, More of the Time. Angew. Chem. Int. Ed. 2003, 42, 30–35.CrossRefGoogle Scholar
  16. 16.
    Trapp, O.; Kimmel, J. R.; Yoon, O. K.; Zuleta, I. A.; Zare, R. N. Continuous Two-Channel Time-of-Flight Mass Spectrometric Detection of Electrosprayed Ions. Angew. Chem. Int. Ed. 2004, 43, 6541–6544.CrossRefGoogle Scholar
  17. 17.
    Kwasnik, M.; Zuleta, I. A.; Fuhrer, K.; Gonin, M.; Zare, R. N.; Fernandez, F. M. Monolithic Atmospheric Pressure Micro-Electrospray Ion Mobility Spectrometer. Proceedings of the 53rd ASMS Conference on Mass Spectrometry; San Antonio, TX, June, 2005; Poster TP194.Google Scholar
  18. 18.
    Clowers, B. H.; Siems, W. F.; Hill, H. H.; Massick, S. M. Hadamard Transform Ion Mobility Spectrometry. Anal. Chem. 2006, 78, 44–51.CrossRefGoogle Scholar
  19. 19.
    Szumlas, A. W.; Ray, S. J.; Hieftje, G. M. Hadamard Transform Ion Mobility Spectrometry. Anal. Chem. 2006, 78, 4474–4481.CrossRefGoogle Scholar
  20. 20.
    Nowak, D. J., Rice, J. E., Bianco, D. R. Ion Gating Grid. U.S. Patent 4,150,319, April 17, 1979.Google Scholar
  21. 21.
    Szumlas, A. W.; Rogers, D. A.; Hieftje, G. M. Design and Construction of a Mechanically Simple, Inter-Digitized Wire Ion Gate. Rev. Sci. Instrum. 2005, 76: 086108.CrossRefGoogle Scholar
  22. 22.
    Stoermer, C. W.; Gilb, S.; Friedrich, J.; Schooss, D.; Kappes, M. M. A High Resolution Dual Mass Gate for Ion Separation in Laser Desorption/Ionization Time of Flight Mass Spectrometry. Rev. Sci. Instrum. 1998, 69, 1661–1664.CrossRefGoogle Scholar
  23. 23.
    Karl, M., Burgartz, R. Method of Manufacturing a Gating Grid. U.S. Patent 5,465,480, November 14, 1995.Google Scholar
  24. 24.
    LeCursi, N.; LeGore, L. J.; Jackson, R. H.; Crothers, C. B. H.; Kleban, P. H.; Frederick, B. G. Fabrication of Chopper for Particle Beam Instrument. U.S. Patent 6,781,120, October 24, 2004.Google Scholar
  25. 25.
    Brock, A.; Rodriguez, N.; Zare, R. N. Hadamard Transform Time-of-Flight Mass Spectrometry. Anal. Chem. 1998, 70, 3735–3741.CrossRefGoogle Scholar
  26. 26.
    Rodriguez, N. Hadamard Transform Time-of-Flight Mass Spectrometry: Implementation and Characteristics. Ph.D. Thesis, Stanford University: Stanford, CA, September 1999.Google Scholar
  27. 27.
    Kimmel, J. R.; Engelke, F.; Zare, R. N. Novel Method for the Production of Finely Spaced Bradbury-Nielsen Gates. Rev. Sci. Instrum. 2001, 72, 4354–4357.CrossRefGoogle Scholar
  28. 28.
    Charles, H. K., Francomacaro, A. S., Keeney, A. C., Lee, D. M., Cornish, T. J. Gating Grid and Method of Making Same. U.S. Patent 6,977,381, December 20, 2005.Google Scholar
  29. 29.
    Zuleta, I. A., Zare, R. N. Microfabricated Beam Modulation Device. US Patent 7,176,452, February 13, 2007.Google Scholar
  30. 30.
    Verbeck, G. F.; Saini, R.; Wylde, J.; Tsui, K., Ellis, M. MEMS Assembled Mass Spectrometry: A Novel Approach to Miniaturization and Construction of Electron and Ion Optics. Proceedings of the 54th ASMS Conference on Mass Spectrometry; Seattle, WA, May 28–June 1, 2006.Google Scholar
  31. 31.
    Yoon, O. K., Zare, R. N. U.S. Patent Pending.Google Scholar
  32. 32.
    Rao, N. N. Elements of Engineering Electromagnetics; Prentice Hall: Englewood Cliffs, NJ, 1977; p 422.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  • Oh Kyu Yoon
    • 1
  • Ignacio A. Zuleta
    • 1
  • Matthew D. Robbins
    • 1
  • Griffin K. Barbula
    • 1
  • Richard N. Zare
    • 1
  1. 1.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations