Journal of the American Society for Mass Spectrometry

, Volume 18, Issue 9, pp 1582–1590 | Cite as

Ionization and transmission efficiency in an electrospray ionization—mass spectrometry interface

  • Jason S. Page
  • Ryan T. Kelly
  • Keqi Tang
  • Richard D. SmithEmail author


The ionization and transmission efficiencies of an electrospray ionization (ESI) interface were investigated to advance the understanding of how these factors affect mass spectrometry (MS) sensitivity. In addition, the effects of the ES emitter distance to the inlet, solution flow rate, and inlet temperature were characterized. Quantitative measurements of ES current loss throughout the ESI interface were accomplished by electrically isolating the front surface of the interface from the inner wall of the heated inlet capillary, enabling losses on the two surfaces to be distinguished. In addition, the ES current lost to the front surface of the ESI interface was spatially profiled with a linear array of 340-µm-diameter electrodes placed adjacent to the inlet capillary entrance. Current transmitted as gas-phase ions was differentiated from charged droplets and solvent clusters by measuring sensitivity with a single quadrupole mass spectrometer. The study revealed a large sampling efficiency into the inlet capillary (>90% at an emitter distance of 1 mm), a global rather than a local gas dynamic effect on the shape of the ES plume resulting from the gas flow conductance limit of the inlet capillary, a large (>80%) loss of analyte ions after transmission through the inlet arising from incomplete desolvation at a solution flow rate of 1.0 µL/min, and a decrease in analyte ions peak intensity at lower temperatures, despite a large increase in ES current transmission efficiency.


Reserpine Transmission Efficiency Solution Flow Rate Charged Droplet Capillary Inlet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Yamashita, M.; Fenn, J. B. Electrospray Ion Source: Another Variation on the Free-Jet Theme. J. Phys. Chem. 1984, 88, 4451–4459.CrossRefGoogle Scholar
  2. 2.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization—Principles and Practice. Mass Spectrom. Rev. 1990, 9, 37–70.CrossRefGoogle Scholar
  3. 3.
    Qian, W. J.; Jacobs, J. M.; Liu, T.; Camp, D. G.; Smith, R. D. Advances and Challenges in Liquid Chromatography-Mass Spectrometry-Based Proteomics Profiling for Clinical Applications. Mol. Cell Proteomics. 2006, 5, 1727–1744.CrossRefGoogle Scholar
  4. 4.
    Shen, Y.; Zhang, R.; Moore, R. J.; Kim, J. K.; Metz, T. O.; Hixson, K. K.; Zhao, R.; Livesay, E. A.; Udseth, H. R.; Smith, R. D. Automated 20 Kpsi RPLC-MS and MS/MS with Chromatographic Peak Capacities of 1,000–1,500 for and Capabilities for Proteomics and Metabolomics. Anal. Chem. 2005, 77, 3090–3100.CrossRefGoogle Scholar
  5. 5.
    Swanson, S. K.; Washburn, M. P. The Continuing Evolution of Shotgun Proteomics. Drug Discov. Today. 2005, 10, 719–725.CrossRefGoogle Scholar
  6. 6.
    Shen, Y.; Smith, R. D. Advanced Nanoscale Separations and Mass Spectrometry for Sensitive High-Throughput Proteomics. Exp. Rev. Proteomics. 2005, 2, 431–447.CrossRefGoogle Scholar
  7. 7.
    Kebarle, P.; Tang, L. From Ions in Solution to Ions in the Gas Phase—The Mechanism of Electrospray Mass Spectrometry. Anal. Chem. 1993, 65, A972-A986.Google Scholar
  8. 8.
    Schneider, B. B.; Javaheri, H.; Covey, T. R. Ion Sampling Effects under Conditions of Total Solvent Consumption. Rapid Commun. Mass Spectrom. 2006, 20, 1538–1544.CrossRefGoogle Scholar
  9. 9.
    Cole, R. B. Some Tenets Pertaining to Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2000, 35, 763–772.CrossRefGoogle Scholar
  10. 10.
    Cech, N. B.; Enke, C. G. Practical Implications of Some Recent Studies in Electrospray Ionization Fundamentals. Mass Spectrom. Rev. 2001, 20, 362–387.CrossRefGoogle Scholar
  11. 11.
    Wilm, M. S.; Mann, M. Electrospray and Taylor-Cone Theory, Dole’s Beam of Macromolecules at Last? Int. J. Mass Spectrom. Ion Processes. 1994, 136, 167–180.CrossRefGoogle Scholar
  12. 12.
    Wahl, J. H.; Goodlett, D. R.; Udseth, H. R.; Smith, R. D. Use of Small-Diameter Capillaries for Increasing Peptide and Protein Detection Sensitivity in Capillary Electrophoresis-Mass Spectrometry. Electrophoresis 1993, 14, 448–457.CrossRefGoogle Scholar
  13. 13.
    Goodlett, D. R.; Wahl, J. H.; Udseth, H. R.; Smith, R. D. Reduced Elution Speed Detection for Capillary Electrophoresis Mass-Spectrometry. J. Microcolumn. Sep. 1993, 5, 57–62.CrossRefGoogle Scholar
  14. 14.
    Fernandez de la Mora, J.; Loscertales, I. The Current Emitted by Highly Conducting Taylor Cones. J. Fluid Mech. 1994, 260, 155–184.CrossRefGoogle Scholar
  15. 15.
    Tang, K.; Page, J. S.; Smith, R. D. Charge Competition and the Linear Dynamic Range of Detection in Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 1416–1423.CrossRefGoogle Scholar
  16. 16.
    Schmidt, A.; Karas, M.; Dulcks, T. Effect of Different Solution Flow Rates on Analyte Ion Signals in Nano-ESI MS, or: When Does ESI Turn into Nano-ESI? J. Am. Soc. Mass Spectrom. 2003, 14, 492–500.CrossRefGoogle Scholar
  17. 17.
    Cole, R. B., Ed. Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications. John Wiley & Sons: New York, 1997.Google Scholar
  18. 18.
    Chowdhury, S. K.; Katta, V.; Chait, B. T. An Electrospray-Ionization Mass Spectrometer with New Features. Rapid Commun. Mass Spectrom. 1990, 4, 81–87.CrossRefGoogle Scholar
  19. 19.
    Li, L. Y. T.; Campbell, D. A.; Bennett, P. K.; Henion, J. Acceptance Criteria for Ultratrace HPLC-Tandem Mass Spectrometry: Quantitative and Qualitative Determination of Sulfonylurea Herbicides in Soil. Anal. Chem. 1996, 68, 3397–3404.CrossRefGoogle Scholar
  20. 20.
    Allanson, J. P.; Biddlecombe, R. A.; Jones, A. E.; Pleasance, S. The Use of Automated Solid Phase Extraction in the “96 Well” Format for High Throughput Bioanalysis Using Lipid Chromatography Coupled to Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 811–816.CrossRefGoogle Scholar
  21. 21.
    Wilm, M.; Mann, M. Analytical Properties of the Nanoelectrospray Ion Source. Anal. Chem. 1996, 68, 1–8.CrossRefGoogle Scholar
  22. 22.
    Smith, R. D.; Loo, J. A.; Edmonds, C. G.; Barinaga, C. J.; Udseth, H. R. New Developments in Biochemical Mass Spectrometry: Electrospray Ionization. Anal. Chem. 1990, 62, 882–899.CrossRefGoogle Scholar
  23. 23.
    Kim, T.; Udseth, H. R.; Smith, R. D. Improved Ion Transmission from Atmospheric Pressure to High Vacuum Using a Multi-Capillary Inlet and Electrodynamic Ion Funnel Interface. Anal. Chem. 2000, 72, 5014–5019.CrossRefGoogle Scholar
  24. 24.
    Bruins, A. Mass Spectrometry with Ion Sources Operating at Atmospheric Pressure. Mass Spectrom. Rev. 1991, 10, 53–77.CrossRefGoogle Scholar
  25. 25.
    Kim, T.; Tolmachev, A. V.; Harkewicz, R.; Prior, D. C.; Anderson, G. A.; Udseth, H. R.; Smith, R. D.; Bailey, T. H.; Rakov, S.; Futrell, J. H. Design and Implementation of a New Electrodynamic Ion Funnel. Anal. Chem. 2000, 72, 2247–2255.CrossRefGoogle Scholar
  26. 26.
    Shaffer, S. A.; Tang, K.; Anderson, G. A.; Prior, D. C.; Udseth, H. R.; Smith, R. D. A Novel Ion Funnel for Focusing Ions at Elevated Pressure Using Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1813–1817.CrossRefGoogle Scholar
  27. 27.
    Page, J. S.; Tolmachev, A. V.; Tang, K.; Smith, R. D. Theoretical and Experimental Evaluation of the Low m/z Transmission of an Electrodynamic Ion Funnel. J. Am. Soc. Mass Spectrom. 2006, 17, 586–592.CrossRefGoogle Scholar
  28. 28.
    Julian, R. R.; Mabbett, S. R.; Jarrold, M. F. Ion Funnels for the Masses: Experiments and Simulations with a Simplified Ion Funnel. J. Am. Soc. Mass Spectrom. 2005, 16, 1708–1712.CrossRefGoogle Scholar
  29. 29.
    Lynn, E. C.; Chung, M. C.; Han, C. C. Characterizing the Transmission Properties of an Ion Funnel. Rapid Commun. Mass Spectrom. 2000, 14, 2129–2134.CrossRefGoogle Scholar
  30. 30.
    Gerlich, D. State-Selected and State-to-State Ion-Molecule Reaction Dynamics. Part 1. Experiment. Wiley: New York, 1992; 1–76.Google Scholar
  31. 31.
    Kebarle, P. A Brief Overview of the Present Status of the Mechanisms Involved in Electrospray Mass Spectrometry. J. Mass Spectrom. 2000, 35, 804–817.CrossRefGoogle Scholar
  32. 32.
    Bruins, A. P. Mechanistic Aspects of Electrospray Ionization [Review]. J. Chromatogr. 1998, 794, 345–357.CrossRefGoogle Scholar
  33. 33.
    Thompson, J. W.; Eschelbach, J. W.; Wilburn, R. T.; Jorgenson, J. W. Investigation of Electrospray Ionization and Electrostatic Focusing Devices Using a Three-Dimensional Electrospray Current Density Profiler. J. Am. Soc. Mass Spectrom. 2005, 16, 312–323.CrossRefGoogle Scholar
  34. 34.
    Busman, M.; Sunner, J.; Vogel, C. R. Space-Charge-Dominated Mass-Spectrometry Ion Sources—Modeling and Sensitivity. J. Am. Soc. Mass Spectrom. 1991, 2, 1–10.CrossRefGoogle Scholar
  35. 35.
    Manisali, I.; Chen, D. D. Y.; Schneider, B. B. Electrospray Ionization Source Geometry for Mass Spectrometry: Past, Present, and Future. Trends Anal. Chem. 2006, 25, 243–256.CrossRefGoogle Scholar
  36. 36.
    Lin, B. W.; Sunner, J. Ion Transport by Viscous Gas Flow through Capillaries. J. Am. Soc. Mass Spectrom. 1994, 5, 873–885.CrossRefGoogle Scholar
  37. 37.
    Kelly, R. T.; Page, J. S.; Luo, Q.; Moore, R. J.; Orton, D. J.; Tang, K.; Smith, R. D. Chemically Etched Open Tubular and Monolithic Emitters for Nanoelectrospray Ionization Mass Spectrometry. Anal. Chem. 2006, 78, 7796–7801.CrossRefGoogle Scholar
  38. 38.
    Shaffer, S. A.; Tolmachev, A.; Prior, D. C.; Anderson, G. A.; Udseth, H. R.; Smith, R. D. Characterization of a New Electrodynamic Ion Funnel Interface for Electrospray Ionization Mass Spectrometry. Anal. Chem. 1999, 71, 2957–2964.CrossRefGoogle Scholar
  39. 39.
    Kim, T.; Tang, K.; Udseth, H. R.; Smith, R. D. A Multi-Capillary Inlet Jet Disruption Electrodynamic Ion Funnel Interface for Improved Sensitivity Using Atmospheric Pressure Ion Sources. Anal. Chem. 2001, 73, 4162–4170.CrossRefGoogle Scholar
  40. 40.
    Kelly, R. T.; Page, J. S.; Tang, K.; Smith, R. D. Array of Chemically Etched Fused Silica Emitters for Improving the Sensitivity and Quantitation of Electrospray Ionization Mass Spectrometry. Anal. Chem. 2007, 79, 4192–4198.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  • Jason S. Page
    • 1
  • Ryan T. Kelly
    • 1
  • Keqi Tang
    • 1
  • Richard D. Smith
    • 1
    Email author
  1. 1.Pacific Northwest National LaboratoryBiological Sciences DivisionRichlandUSA

Personalised recommendations