Efficient calculation of exact mass isotopic distributions

Articles

Abstract

This paper presents a new method for efficiently calculating the exact masses in an isotopic distribution using a dynamic programming approach. The resulting program, isoDalton, can generate extremely high isotopic resolutions as demonstrated by a FWHM resolution of 2 × 1011. This resolution allows very fine mass structures in isotopic distributions to be seen, even for large molecules. Since the number of exact masses grows exponentially with molecular size, only the most probable exact masses are kept, the number of which is user specified.

Supplementary material

13361_2011_180801511_MOESM1_ESM.zip (130 kb)
Supplementary material, approximately 133 KB.

References

  1. 1.
    Werlen, R. C. Effect of Resolution on the Shape of Mass Spectra of Proteins: Some Theoretical Considerations. Rapid Commun. Mass Spectrom. 1994, 8, 976–980.CrossRefGoogle Scholar
  2. 2.
    Yergey, J. A. A General Approach to Calculating Isotopic Distributions for Mass Spectrometry. Int. J. Mass Spectrom. Ion Phys. 1983, 52, 337–349.CrossRefGoogle Scholar
  3. 3.
    Kubinyi, H. Calculation of Isotope Distributions in Mass Spectrometry: A Trivial Solution for a Nontrivial Problem. Anal. Chim. Acta. 1991, 247, 107–119.CrossRefGoogle Scholar
  4. 4.
    Brownawell, M. L.; San Filippo, J. A Program for the Synthesis of Mass Spectral Isotopic Abundances. J. Chem. Edu. 1982, 59(8), 663–665.CrossRefGoogle Scholar
  5. 5.
    Roussis, S. G.; Prouix, R. Reduction of Chemical Formulas from the Isotopic Peak Distributions of High-Resolution Mass Spectra. Anal Chem. 2003, 75, 1470–1482.CrossRefGoogle Scholar
  6. 6.
    Rockwood, A. L.; Van Orman, J. R.; Dearden, D. V. Isotopic Composition and Accurate Masses of Single Isotopic Peaks. J. Am. Soc. Mass Spectrom. 2004, 15, 2004.CrossRefGoogle Scholar
  7. 7.
    Rockwood, A. L.; Haimi, P. Efficient Calculation of Accurate Masses of Isotopic Peaks. J. Am. Soc. Mass Spectrom. 2006, 17, 415–419.CrossRefGoogle Scholar
  8. 8.
    Rockwood, A. L.; Van Orden, S. L.; Smith, R. D. Rapid Calculation of Isotope Distributions. Anal. Chem. 1995, 67, 2699–2704.CrossRefGoogle Scholar
  9. 9.
    Rockwood, A. L.; Van Orden, S. L.; Smith, R. D. Ultrahigh Resolution Isotope Distribution Calculations. Rapid Commun. Mass Spectrom. 1996, 10, 54–59.CrossRefGoogle Scholar
  10. 10.
    Bellman, R. On the Theory of Dynamic Programming. Proceedings of the National Academy of Sciences 1952, 38(8), 716–719.CrossRefGoogle Scholar
  11. 11.
    Siuzdak, G. The Expanding Role of Mass Spectrometry in Biotechnology; MCC Press: San Diego, 2003; p. 44.Google Scholar
  12. 12.
    MATLAB, a technical computing environment and language from The Mathworks, Inc., www.mathworks.com.Google Scholar
  13. 13.
    Free Software Foundation, Inc. Boston, MA; http://www.gnu.org/licenses.Google Scholar
  14. 14.
    NIST Isotope Data: http://physics.nist.gov/PhysRefData/Compositions/index.html.Google Scholar
  15. 15.
    Mott, J. L.; Kandel, A.; Baker, T. P. Discrete Mathematics for Computer Scientists and Mathematicians; 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, 1986; Chap II.Google Scholar
  16. 16.
    Ma, X.; Kavcic, A. Path Partitions and Forward-Only Trellis Algorithms. IEEE Trans. Information Theory 2003, 49(1), 38–52.CrossRefGoogle Scholar
  17. 17.
    Rabiner, L. R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE 1989, 77, 257–286.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  1. 1.Technology, Inc.BozemanUSA
  2. 2.Department of Electrical and Computer EngineeringMontana State UniversityBozemanUSA

Personalised recommendations