The combination of electron capture dissociation and fixed charge derivatization increases sequence coverage for O-glycosylated and O-phosphorylated peptides

  • Julia Chamot-Rooke
  • Guillaume van der Rest
  • Alexandre Dalleu
  • Sylvie Bay
  • Jérôme Lemoine
Articles

Abstract

Electron capture dissociation (ECD) has become an alternative method to collision-activated dissociation (CAD) to avoid gas-phase cleavage of post-translational modifications carried by side chains from the peptide backbone. Nonetheless, as illustrated herein by the study of O-glycosylated and O-phosphorylated peptides, the extent of ECD fragmentations may be insufficient to cover the entire peptide sequence and to localize accurately these modifications. The present work demonstrates that the derivatization of peptides at their N-terminus by a phosphonium group improves dramatically and systematically the sequence coverage deduced from the ECD spectrum for both O-glycosylated and O-phosphorylated peptides compared with their native counterparts. The exclusive presence of N-terminal fragments (c-type ions) in the ECD spectra of doubly charged molecular cations simplifies peptide sequence interpretation. Thus, the combination of ECD and fixed charge derivatization appears as an efficient analytical tool for the extensive sequencing of peptides bearing labile groups.

References

  1. 1.
    Huddleston, M. J.; Annan, R. S.; Bean, M. F.; Carr, S. A. Selective Detection of Phosphopeptides in Complex Mixtures by Electrospray Liquid Chromatograph/Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1993, 4, 710–717.CrossRefGoogle Scholar
  2. 2.
    Hanisch, F. G.; Green, B. N.; Bateman, R.; Peter-Katalinic, J. Localization of O-Glycosylation Sites of MUC1 Tandem Repeats by QTOF ESI Mass Spectrometry. J. Mass Spectrom. 1998, 33, 358–362.CrossRefGoogle Scholar
  3. 3.
    Rademaker, G. J.; Pergantis, S. A.; Blok-Tip, L.; Langridge, J. I.; Kleen, A.; Thomas-Oates, J. Mass Spectrometric Determination of the Sites of O-Glycan Attachment with Low Picomolar Sensitivity. Anal. Biochem. 1998, 257, 149–160.CrossRefGoogle Scholar
  4. 4.
    Greis, K. D.; Hayes, B. K.; Comer, F. I.; Kirk, M. K.; Barnes, S.; Lowary, T. L.; Hart, G. W. Selective Detection and Site-Analysis of O-GlcNAc-Modified Glycopeptides by β-Elimination and Tandem Electrospray Mass Spectrometry. Anal. Biochem. 1996, 234, 38–49.CrossRefGoogle Scholar
  5. 5.
    Mirgorodskaya, E.; Hassan, H.; Clausen, H.; Roepstorff, P. Mass Spectrometric Determination of O-Glycosylation Sites Using β-Elimination and Partial Acid Hydrolysis. Anal. Chem. 2001, 73, 1263–1269.CrossRefGoogle Scholar
  6. 6.
    Mirgorodskaya, E.; Roepstorff, P.; Zubarev, R. A. Localization of O-Glycosylation Sites in Peptides by Electron Capture Dissociation in a Fourier Transform Mass Spectrometer. Anal. Chem. 1999, 71, 4431–4436.CrossRefGoogle Scholar
  7. 7.
    Cooper, H.; Håkansson, K.; Marshall, A. G. The Role of Electron Capture Dissociation in Biomolecular Analysis. Mass Spectrometry. Reviews. 2005, 24, 201–222.CrossRefGoogle Scholar
  8. 8.
    Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectrometry. PNAS. 2004, 26, 9528–9533.CrossRefGoogle Scholar
  9. 9.
    Shi, S. D.-H.; Hemling, M. E.; Carr, S. A.; Horn, D. M.; Lindgh, I.; McLafferty, F. W. Phosphopeptide/Phosphoprotein Mapping by Electron Capture Dissociation Mass Spectrometry. Anal. Chem. 2001, 73, 19–22.CrossRefGoogle Scholar
  10. 10.
    Kelleher, N. L.; Zubarev, R. A.; Bush, K.; Furie, B.; Furie, B. C.; McLafferty, F. W.; Walsh, C. T. Localization of Labile Posttranslational Modifications by Electron Capture Dissociation: The Case of γ-Carboxyglutamic Acid. Anal. Chem. 1999, 71, 4250–4253.CrossRefGoogle Scholar
  11. 11.
    Ge, Y.; Lawhorn, B. G.; El Naggar, M.; Strauss, E.; Park, J.-H.; Begley, T. P.; McLafferty, F. W. Top Down Characterization of Larger Proteins (45 kDa) by Electron Capture Dissociation Pass Spectrometry. J. Am. Chem. Soc. 2002, 124, 672–678.CrossRefGoogle Scholar
  12. 12.
    Bogdanov, B.; Smith, R. D. Proteomics by FTICR Mass Spectrometry: Top Down and Bottom Up. Mass Spectrom. Rev. 2005, 24, 168–200.CrossRefGoogle Scholar
  13. 13.
    O’Connor, P. B.; Lin, C.; Cournoyer, J. J.; Pittman, J. L.; Belyayev, M.; Budnik, B. A. Long-Lived Electron Capture Dissociation Product Ions Experience Radical Migration via Hydrogen Abstraction. J. Am. Soc. Mass Spectrom. 2006, 17, 576–585.CrossRefGoogle Scholar
  14. 14.
    Savitski, M. M.; Kjeldsen, F.; Nielsen, M. L.; Zubarev, R. A. Hydrogen Rearrangement to and from Radical z-Fragments in Electron Capture Dissociation of Peptides. J. Am. Soc. Mass Spectrom. 2007, 18, 113–120.CrossRefGoogle Scholar
  15. 15.
    Horn, D. M.; Ge, Y.; McLafferty, F. W. Activated Ion Electron Capture Dissociation for Mass Spectral Sequencing of Larger (42 kDa) Proteins. Anal. Chem. 2000, 72, 4778–4784.CrossRefGoogle Scholar
  16. 16.
    Han, X.; Jin, M.; Breuker, K.; McLafferty, F. W. Extending Top-Down Mass Spectrometry to Proteins with Masses Greater than 200 kDa. Science 2006, 314, 109–112.CrossRefGoogle Scholar
  17. 17.
    Chalmers, M. J.; Håkansson, K.; Johnson, R.; Smith, R.; She, J.; Emmett, M. R.; Marshall, A. G. Protein Kinase A Phosphorylation Characterized by Tandem Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Proteomics 2004, 4, 970–981.CrossRefGoogle Scholar
  18. 18.
    Håkansson, K.; Chalmers, M. J.; Quinn, J. P.; McFarland, M. A.; Hendrickson, C. L.; Marshall, A. G. Combined Electron Capture and Infrared Multiphoton Dissociation for Multistage MS/MS in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Anal. Chem. 2003, 75, 3256–3262.CrossRefGoogle Scholar
  19. 19.
    Sadagopan, N.; Malone, M.; Watson, J. T. Effect of Charge Derivatization in the Determination of Phosphorylation Sites in Peptides by Electrospray Ionization Collision-activated Dissociation Tandem Mass Spectrometry. J. Mass Spectrom. 1999, 34, 1279–1282.CrossRefGoogle Scholar
  20. 20.
    Czeszak, X.; Morelle, W.; Ricart, G.; Tetaert, D.; Lemoine, J. Localization of the O-Glycosylated Sites in Peptides by Fixed-Charge Derivatization with a Phosphonium Group. Anal. Chem. 2004, 76, 4320–4324.CrossRefGoogle Scholar
  21. 21.
    Caravatti, P.; Allemann, M. The Infinity Cell—A New Trapped-Ion Cell with Radiofrequency Covered Trapping Electrodes for Fourier-Transform Ion-Cyclotron Resonance Mass-Spectrometry. Org. Mass Spectrom. 1991, 26, 514–518.CrossRefGoogle Scholar
  22. 22.
    Gauthier, J. W.; Trautman, T. R.; Jacobson, D. B. Sustained Off-Resonance Irradiation for Collision-Activated Dissociation Involving Fourier Transform Mass Spectrometry: Collision-Activated Dissociation Technique that Emulates Infrared Multiphoton Dissociation. Anal. Chim. Acta. 1991, 246, 211–225.CrossRefGoogle Scholar
  23. 23.
    Tsybin, Y. O.; Ramström, M.; Witt, M.; Baykut, G.; Håkansson, P. Peptide and Protein Characterization by High-Rate Electron Capture Dissociation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Mass Spectrom. 2004, 39, 719–729.CrossRefGoogle Scholar
  24. 24.
    Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. Electron Capture Dissociation of Multiply Charged Protein Cations: A Nonergodic Process. J. Am. Chem. Soc. 1998, 120, 3265–3266.CrossRefGoogle Scholar
  25. 25.
    Cooper, H. J. Investigation of the Presence of b Ions in Electron Capture Dissociation Mass Spectra. J. Am. Soc. Mass Spectrom. 2005, 16, 1932–1940.CrossRefGoogle Scholar
  26. 26.
    Haselmann, K. F.; Schmidt, M. Do b-Ions Occur from Vibrational Excitation Upon H-Desorption in Electron Capture Dissociation?. Rapid Commun. Mass Spectrom. 2007, 21, 1003–1008.CrossRefGoogle Scholar
  27. 27.
    Mormann, M.; Paulsen, H.; Peter-Katalinic, J. Electron Capture Dissociation of O-Glycosylated Peptides: Radical Site-Induced Fragmentation of Glycosidic Bond. Eur. J. Mass Spectrom. 2005, 11, 497–511.CrossRefGoogle Scholar
  28. 28.
    Syrstad, E. A.; Turecek, F. Toward a General Mechanism of Electron Capture Dissociation. J. Am. Soc. Mass Spectrom. 2005, 16, 208–224.CrossRefGoogle Scholar
  29. 29.
    Anusiewicz, I.; Berdys-Kochanska, J.; Skurski, P.; Simons, J. Simulating Electron Transfer Attachment to a Positively Charged Model Peptide. J. Phys. Chem. A. 2006, 110, 1261–1266.CrossRefGoogle Scholar
  30. 30.
    Anusiewicz, I.; Berdys-Kochanska, J.; Simons, J. The Electron Attachment Step in Electron Capture (ECD) and Electron Transfer Dissociation (ETD). J. Phys. Chem. A. 2005, 109, 5801–5813.CrossRefGoogle Scholar
  31. 31.
    Sobczyk, M.; Simons, J. Distance Dependence of Through-Bond Electron Transfer Rates in Electron-Capture and Electron-transfer Dissociation. Int. J. Mass Spectrom. 2006, 253, 274–280.CrossRefGoogle Scholar
  32. 32.
    Sobczyk, M.; Simons, J. The Role of Excited Rydberg States in Electron Transfer Dissociation. J. Phys. Chem. B. 2006, 110, 7519–7527.CrossRefGoogle Scholar
  33. 33.
    Huang, Z. H.; Wu, J.; Gage, D. A.; Watson, J. T. A Picomole-Scale Method for Charge Derivatization of Peptides for Sequence Analysis by Mass Spectrometry. Anal. Chem. 1997, 69, 137–144.CrossRefGoogle Scholar
  34. 34.
    Sadagopan, N.; Watson, J. T. Investigation of the Tris(Trimethoxyphenyl)Phosphonium Acetyl Charged Derivatives of Peptides by Electrospray Ionization Mass Spectrometry and Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2000, 11, 107–119.CrossRefGoogle Scholar
  35. 35.
    Huang, Z. H.; Shen, T.; Wu, J.; Gage, D. A.; Watson, J. T. Protein Sequencing by Matrix-Assisted Laser Desorption Ionization-Postsource Decay-Mass Spectrometry Analysis of the N-Tris(2,4,6-Trimethoxyphenyl)Phosphine-Acetylated Tryptic Digests. Anal. Biochem. 1999, 268, 305–317.CrossRefGoogle Scholar
  36. 36.
    Roth, K. D. W.; Huang, Z. H.; Sadagopan, N.; Watson, J. T. Charge Derivatization of Peptides for Analysis by Mass Spectrometry. Mass Spectrom. Rev. 1998, 17, 255–274.CrossRefGoogle Scholar
  37. 37.
    Sadagopan, N.; Watson, J. T. Mass Spectrometric Evidence for Mechanisms of Fragmentation of Charge-Derivatized Peptides. J. Am. Soc. Mass Spectrom. 2001, 12, 399–409.CrossRefGoogle Scholar
  38. 38.
    Chen, W.; Lee, P. J.; Shion, H.; Ellor, N.; Gebler, J. C. Improving de Novo Sequencing of Peptides Using a Charged Tag and C-Terminal Digestion. Anal. Chem. 2007, 79, 1583–1590.CrossRefGoogle Scholar
  39. 39.
    Iavarone, A. T.; Paech, K.; Williams, E. R. Effects of Charge and Cationizing Agent on the Electron Capture Dissociation of a Peptide. Anal. Chem. 2004, 76, 2231–2238.CrossRefGoogle Scholar
  40. 40.
    Zubarev, R. A.; Haselmann, K. F.; Budnik, B.; Kjeldsen, F.; Jensen, F. Towards an Understanding of the Mechanism of Electron-Capture Dissociation: A Historical Perspective and modern ideas. Eur. J. Mass Spectrom. 2002, 8, 337–349.CrossRefGoogle Scholar
  41. 41.
    Håkansson, K.; Hudgins, R. R.; Marshall, A. G. Electron Capture Dissociation and Infrared Multiphoton Dissociation of Oligodeoxynucleotide Dications. J. Am. Soc. Mass Spectrom. 2003, 14, 23–41.CrossRefGoogle Scholar
  42. 42.
    Fung, Y. M. E.; Liu, H.; Chan, T.-W. D. Electron Capture Dissociation of Peptides Metalated with Alkaline-Earth Metal Ions. J. Am. Soc. Mass Spectrom. 2006, 17, 757–771.CrossRefGoogle Scholar
  43. 43.
    Liu, H.; Håkansson, K. Electron Capture Dissociation of Tyrosine O-Sulfated Peptides Complexed with Divalent Metal Cations. Anal. Chem. 2006, 78, 7570–7576.CrossRefGoogle Scholar
  44. 44.
    Shaffer, S. A.; Turecek, F. Hydrogentrimethylammonium: A marginally stable hypervalent radical. J. Am. Chem. Soc. 1994, 116, 8647–8653.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  • Julia Chamot-Rooke
    • 1
  • Guillaume van der Rest
    • 1
  • Alexandre Dalleu
    • 1
  • Sylvie Bay
    • 3
  • Jérôme Lemoine
    • 2
  1. 1.Laboratoire des Mécanismes Réactionnels, Ecole PolytechniqueCNRSPalaiseauFrance
  2. 2.UMR 5180 Sciences Analytiques (Université Lyon 1 et CNRS)VilleurbanneFrance
  3. 3.Unité de Chimie OrganiqueInstitut Pasteur CNRSParisFrance

Personalised recommendations