Ion mobility spectrometry—mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures

  • Erin Shammel Baker
  • Brian H. Clowers
  • Fumin Li
  • Keqi Tang
  • Aleksey V. Tolmachev
  • David C. Prior
  • Mikhail E. Belov
  • Richard D. Smith
Focus: From Mobilities To Proteomes


The ability of ion mobility spectrometry coupled with mass spectrometry (IMS-MS) to characterize biological mixtures has been illustrated over the past eight years. However, the challenges posed by the extreme complexity of many biological samples have demonstrated the need for higher resolution IMS-MS measurements. We have developed a higher resolution ESI-IMS-TOF MS by utilizing high-pressure electrodynamic ion funnels at both ends of the IMS drift cell and operating the drift cell at an elevated pressure compared with that conventionally used. The ESI-IMS-TOF MS instrument consists of an ESI source, an hourglass ion funnel used for ion accumulation/injection into an 88 cm drift cell, followed by a 10 cm ion funnel and a commercial orthogonal time-of-flight mass spectrometer providing high mass measurement accuracy. It was found that the rear ion funnel could be effectively operated as an extension of the drift cell when the DC fields were matched, providing an effective drift region of 98 cm. The resolution of the instrument was evaluated at pressures ranging from 4 to 12 torr and ion mobility drift voltages of 16 V/cm (4 torr) to 43 V/cm (12 torr). An increase in resolution from 55 to 80 was observed from 4 to 12 torr nitrogen drift gas with no significant loss in sensitivity. The choice of drift gas was also shown to influence the degree of ion heating and relative trapping efficiency within the ion funnel.


Drift Time Collision Cross Section Drift Cell Arrival Time Distribution Mass Spectrometry Instrument 


  1. 1.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization—Principles and Practice. Mass Spectrom. Rev. 1990, 9, 37–70.CrossRefGoogle Scholar
  2. 2.
    Wolters, D. A.; Washburn, M. P.; Yates, J. R. An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics. Anal Chem. 2001, 73, 5683–5690.CrossRefGoogle Scholar
  3. 3.
    Peng, J.; Elias, J. E.; Thoreen, C. C.; Licklider, L. J.; Gygi, S. P. Evaluation of Multidimensional Chromatography Coupled with Tandem Mass Spectrometry (LC/LC-MS/MS) for Large-Scale Protein Analysis: The Yeast Proteome. J. Proteome Res. 2003, 2, 43–50.CrossRefGoogle Scholar
  4. 4.
    Shen, Y.; Zhao, R.; Berger, S. J.; Anderson, G. A.; Rodriguez, N.; Smith, R. D. High-Efficiency Nanoscale Liquid Chromatography Coupled On-Line with Mass Spectrometry Using Nanoelectrospray Ionization for Proteomics. Anal. Chem. 2002, 74, 4235–4249.CrossRefGoogle Scholar
  5. 5.
    Bowers, M. T.; Kemper, P. R.; von Helden, G.; van Koppen, P. A. M. Gas-Phase Ion Chromatography: Transition Metal State Selection and Carbon Cluster Formation. Science 1993, 260, 1446–1451.CrossRefGoogle Scholar
  6. 6.
    Clemmer, D. E.; Jarrold, M. F. Ion Mobility Measurements and Their Applications to Clusters and Biomolecules. J. Mass Spectrom. 1997, 32, 577–592.CrossRefGoogle Scholar
  7. 7.
    Wyttenbach, T.; Bowers, M. T. Gas-Phase Conformations: The Ion Mobility/Ion Chromatography Method. Top. Curr. Chem. 2003, 225, 207–232.CrossRefGoogle Scholar
  8. 8.
    Valentine, S. J.; Counterman, A. E.; Hoaglund, C. S.; Reilly, J. P.; Clemmer, D. E. Gas-Phase Separations of Protease Digests. J. Am. Soc. Mass Spectrom. 1998, 9, 1213–1216.CrossRefGoogle Scholar
  9. 9.
    Henderson, S. C.; Valentine, S. J.; Counterman, A. E.; Clemmer, D. E. ESI/Ion Trap/Ion Mobility/Time-of-Flight Mass Spectrometry for Rapid and Sensitive Analysis of Biomolecular Mixtures. Anal. Chem. 1999, 71, 291–301.CrossRefGoogle Scholar
  10. 10.
    Valentine, S. J.; Kulchania, M.; Srebalus Barnes, C. A.; Clemmer, D. E. Multidimensional separations of complex peptide mixtures: A combined high-performance liquid chromatography/ion mobility/time-of-flight mass spectrometry approach. Int. J. Mass Spectrom. 2001, 212, 97–109.CrossRefGoogle Scholar
  11. 11.
    Lee, Y. J.; Hoaglund-Hyzer, C. S.; Srebalus Barnes, C. A.; Hilderbrand, A. E.; Valentine, S. J.; Clemmer, D. E. Development of High-Throughput Liquid Chromatography Injected Ion Mobility Quadrupole Time-of-Flight Techniques for Analysis of Complex Peptide Mixtures. J. Chromatog. B. 2002, 782, 343–351.CrossRefGoogle Scholar
  12. 12.
    Adkins, J. N.; Varnum, S. M.; Auberry, K. J.; Moore, R. J.; Angell, N. H.; Smith, R. D.; Springer, D. L.; Pounds, J. G. Toward a Human Blood Serum Proteome: Analysis by Multidimensional Separation Coupled with Mass Spectrometry. Mol. Cell. Proteomics 2002, 1, 947–955.CrossRefGoogle Scholar
  13. 13.
    Tirumalai, R. S.; Chan, K. C.; Prieto, D. A.; Issaq, H. J.; Conrads, T. P.; Veenstra, T. D. Characterization of the Low Molecular Weight Human Serum Proteome. Mol. Cell. Proteomics 2003, 2, 1096–1103.CrossRefGoogle Scholar
  14. 14.
    Mason, E. A.; McDaniel, E. W. Transport Properties of Ions in Gases; Wiley: New York; 1988.CrossRefGoogle Scholar
  15. 15.
    Rivercomb, H. E.; Mason, E. A. Theory of Plasma Chromatography/Gaseous Electrophoresis. Anal. Chem. 1975, 47, 970–983.CrossRefGoogle Scholar
  16. 16.
    Strittmatter, E. F.; Kangas, L. J.; Petritis, K.; Mottaz, H. M.; Anderson, G. A.; Shen, Y.; Jacobs, J. M.; Camp, D. G.; Smith, R. D. Application of Peptide LC Retention Time Information in a Discriminant Function for Peptide Identification by Tandem Mass Spectrometry. J. Proteome Res. 2004, 3, 760–769.CrossRefGoogle Scholar
  17. 17.
    Tang, K.; Shvartsburg, A. A.; Lee, H. N.; Prior, D. C.; Buschbach, M. A.; Li, F. M.; Tolmachev, A. V.; Anderson, G. A.; Smith, R. D. High-Sensitivity Ion Mobility Spectrometry/Mass Spectrometry Using Electrodynamic Ion Funnel Interfaces. Anal. Chem. 2005, 77, 3330–3339.CrossRefGoogle Scholar
  18. 18.
    Ibrahim, Y.; Tang, K. Q.; Tolmachev, A. V.; Shvartsburg, A. A.; Smith, R. D. Improving Mass Spectrometer Sensitivity Using a High-Pressure Electrodynamic Ion Funnel Interface. J. Am. Soc. Mass Spectrom. 2006, 17, 1299–1305.CrossRefGoogle Scholar
  19. 19.
    Kelly, R. T.; Page, J. S.; Luo, Q.; Moore, R. J.; Orton, D. J.; Tang, K.; Smith, R. D. Chemically Etched Open Tubular and Monolithic Emitters for Nanoelectrospray Ionization Mass Spectrometry. Anal. Chem. 2006, 78, 7796–7801.CrossRefGoogle Scholar
  20. 20.
    Kim, T.; Tolmachev, A. V.; Harkewicz, R.; Prior, D. C.; Anderson, G. A.; Udseth, H. R.; Smith, R. D.; Bailey, T. H.; Rakov, S.; Futrell, J. H. Design and Implementation of a New Electrodynamic Ion Funnel. Anal. Chem. 2000, 72, 2247–2255.CrossRefGoogle Scholar
  21. 21.
    Kim, T.; Tang, K. Q.; Udseth, H. R.; Smith, R. D. A Multicapillary Inlet Jet Disruption Electrodynamic Ion Funnel Interface for Improved Sensitivity Using Atmospheric Pressure Ion Sources. Anal. Chem. 2001, 73, 4162–4170.CrossRefGoogle Scholar
  22. 22.
    Smith, R. D.; Kim, T.; Tang, K. Q.; Udseth, H. R. U.S. Patent 6,583,408, 2003.Google Scholar
  23. 23.
    Kemper, P. R.; Bowers, M. T. A Hybrid Double-Focusing Mass Spectrometer—High-Pressure Drift Reaction Cell to Study Thermal Energy Reactions of Mass-Selected Ions. J. Am. Soc. Mass Spectrom. 1990, 1, 197–207.CrossRefGoogle Scholar
  24. 24.
    von Helden, G.; Gotts, N.; Bowers, M. T. Annealing of Carbon Cluster Cations: Rings to Rings and Rings to Fullerenes. J. Am. Chem. Soc. 1993, 115, 4363–4364.CrossRefGoogle Scholar
  25. 25.
    Gidden, J.; Kemper, P. R.; Shammel, E.; Fee, D. P.; Anderson, S. E.; Bowers, M. T. Application of Ion Mobility to the Gas-Phase Conformational Analysis of Polyhedral Oligomeric Silsesquioxanes. Int. J. Mass Spectrom. 2003, 222, 63–73.CrossRefGoogle Scholar
  26. 26.
    von Helden, G.; Hsu, M.-T.; Kemper, P. R.; Bowers, M. T. Structures of carbon cluster ions from 3 to 60 atoms: Linears to rings to fullerenes. J. Chem. Phys. 1991, 95, 3835–3837.CrossRefGoogle Scholar
  27. 27.
    Page, J. S.; Tolmachev, A. V.; Tang, K.; Smith, R. D. Variable low-mass filtering using an electrodynamic ion funnel. J. Mass Spectrom. 2005, 40, 1215–1222.CrossRefGoogle Scholar
  28. 28.
    Wyttenbach, T.; Kemper, P. R.; Bowers, M. T. Design of a New Electrospray Ion Mobility Mass Spectrometer. Int. J. Mass Spectrom. 2001, 212, 13–23.CrossRefGoogle Scholar
  29. 29.
    Merenbloom, S. I.; Koeniger, S. L.; Valentine, S. J.; Plasencia, M. D.; Clemmer, D. E. IMS-IMS and IMS-IMS-IMS/MS for Separating Peptide and Protein Fragment Ions. Anal. Chem. 2006, 78, 2802–2809.CrossRefGoogle Scholar
  30. 30.
    Koeniger, S. L.; Merenbloom, S. I.; Valentine, S. J.; Jarrold, M. F.; Udseth, H. R.; Smith, R. D.; Clemmer, D. E. An IMS-IMS Analogue of MS-MS. Anal. Chem. 2006, 78, 4161–4174.CrossRefGoogle Scholar
  31. 31.
    Siems, W. F.; Wu, C.; Tarver, E. E.; Hill, H. H.; Larsen, P. R.; McMinn, D. G. Measuring the Resolving Power of Ion Mobility Spectrometers. Anal. Chem. 1999, 66, 4195–4201.CrossRefGoogle Scholar
  32. 32.
    Wu, C.; Siems, W. F.; Klasmeier, J.; Hill, H. H. Separation of Isomeric Peptides Using Electrospray Ionization/High-Resolution Ion Mobility Spectrometry. Anal. Chem. 2000, 72, 391–395.CrossRefGoogle Scholar
  33. 33.
    Dugourd, P.; Hudgins, R. R.; Clemmer, D. E.; Jarrold, M. F. High-Resolution Ion Mobility Measurements. Rev. Sci. Instrum. 1997, 68, 1122–1129.CrossRefGoogle Scholar
  34. 34.
    Hill, H. H.; Hill, C. H.; Asbury, G. R.; Wu, C.; Matz, L. M.; Ichiye, T. Charge Location on Gas Phase Peptides. Int. J. Mass Spectrom. 2002, 219, 23–27.CrossRefGoogle Scholar
  35. 35.
    Beegle, L. W.; Kanik, I.; Matz, L.; Hill, H. H. Effects of Drift-Gas Polarizability on Glycine Peptides in Ion Mobility Spectrometry. Int. J. Mass Spectrom. 2002, 216, 257–268.CrossRefGoogle Scholar
  36. 36.
    Tolmachev, A. V.; Kim, T.; Udseth, H. R.; Smith, R. D.; Bailey, T. H.; Futrell, J. H. Simulation-Based Optimization of the Electrodynamic Ion Funnel for High Sensitivity Electrospray Ionization Mass Spectrometry. Int. J. Mass Spectrom. Ion Processes 2000, 203, 31–47.CrossRefGoogle Scholar
  37. 37.
    Tolmachev, A. V.; Chernushevich, I. V.; Dodonov, A. F.; Standing, K. G. A Collisional Focusing Ion Guide for Coupling an Atmospheric Pressure Ion Source to a Mass Spectrometer. Nucl. Instrum. Methods Phys. Res. B 1997, 124, 112–119.CrossRefGoogle Scholar
  38. 38.
    Liu, Y.; Valentine, S. J.; Clemmer, D. E. (unpublished results).∼clemmer.Google Scholar
  39. 39.
    Tolmachev, A. V.; Udseth, H. R.; Smith, R. D. Radial Stratification of Ions as a Function of Mass to Charge Ratio in Collisional Cooling Radio Frequency Multipoles Used as Ion Guides or Ion Traps. Rapid Commun. Mass Spectrom. 2000, 14, 1907–1913.CrossRefGoogle Scholar
  40. 40.
    Belov, M. E.; Nikolaev, E. N.; Harkewicz, R.; Masselon, C. D.; Alving, K.; Smith, R. D. Ion Discrimination During Ion Accumulation in a Quadrupole Interface External to a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Int. J. Mass Spectrom. 2001, 208, 205–225.CrossRefGoogle Scholar
  41. 41.
    Tolmachev, A. V.; Udseth, H. R.; Smith, R. D. Modeling the Ion Density Distribution in Collisional Cooling RF Multipole Ion Guides. Int. J. Mass Spectrom. 2003, 222, 155–174.CrossRefGoogle Scholar
  42. 42.
    Tolmachev, A. V.; Udseth, H. R.; Smith, R. D. Charge Capacity Limitations of Radio Frequency Ion Guides in Their Use for Improved Ion Accumulation and Trapping in Mass Spectrometry. Anal. Chem. 2000, 72, 970–978.CrossRefGoogle Scholar
  43. 43.
    Tolmachev, A. V.; Vilkov, A. N.; Bogdanov, B.; Pasa-Tolic, L.; Masselon, C. D.; Smith, R. D. Collisional Activation of Ions in RF Ion Traps and Ion Guides: The effective ion temperature treatment. J. Am. Soc. Mass Spectrom. 2004, 15, 1616–1628.CrossRefGoogle Scholar
  44. 44.
    Counterman, A. E.; Valentine, S. J.; Srebalus, C. A.; Henderson, S. C.; Hoaglund, C. S.; Clemmer, D. E. High-Order Structure and Dissociation of Gaseous Peptide Aggregates that are Hidden in Mass Spectra. J. Am. Soc. Mass Spectrom. 1998, 9, 743–759.CrossRefGoogle Scholar
  45. 45.
    Valentine, S. J.; Counterman, A. E.; Clemmer, D. E. Conformer-Dependent Proton-Transfer Reactions of Ubiquitin Ions. J. Am. Soc. Mass Spectrom. 1997, 8, 954–961.CrossRefGoogle Scholar
  46. 46.
    Shelimov, K. B.; Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. Protein Structure in Vacuo: Gas-Phase Conformations of BPTI and Cytochrome. c. J. Am. Chem. Soc. 1997, 119, 2240–2248.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  • Erin Shammel Baker
    • 1
  • Brian H. Clowers
    • 1
  • Fumin Li
    • 1
  • Keqi Tang
    • 1
  • Aleksey V. Tolmachev
    • 1
  • David C. Prior
    • 1
  • Mikhail E. Belov
    • 1
  • Richard D. Smith
    • 1
  1. 1.Biological Sciences Division and Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations