B-DNA Helix Stability in a Solvent-Free Environment

  • Erin Shammel Baker
  • Michael T. Bowers
Focus: From Mobilities To Proteomes


B-DNA is the most common DNA helix conformation under physiological conditions. However, when the amount of water in a DNA solution is decreased, B-to-A helix transitions have been observed. To understand what type of helix conformations exist in a solvent-free environment, a series of poly d(CG) n and mixed sequence DNA duplexes from 18 to 30 bp were examined with circular dichroism (CD), ESI-MS, ion mobility, and molecular dynamics. From the CD spectra, it was observed that all sequences had B-form helices in solution. However, the solvent-free results were more complex. For the poly d(CG) n series, the 18 bp duplex had an A-form helix conformation, both A- and B-helices were present for the 22 bp duplex, and only B-helices were observed for the 26 and 30 bp duplexes. Since these sequences were all present as B-DNA in solution, the observed solvent-free structures illustrate that smaller helices with fewer base pairs convert to A-DNA more easily than larger helices in the absence of solvent. A similar trend was observed for the mixed sequence duplexes where both an A- and B-helix were present for the 18 bp duplex, while only B-helices occur for the larger 22, 26, and 30 bp duplexes. Since the solvent-free B-helices appear at smaller sizes for the mixed sequences than for the pure d(CG) n duplexes, the pure d(CG) n duplexes have a greater A-philicity.


Circular Dichroism Experimental Cross Section Mixed Sequence Drift Cell Collisional Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Watson, J. D.; Crick, F. H. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171, 737.CrossRefGoogle Scholar
  2. 2.
    Langridge, R.; Wilson, H. R.; Hooper, C. W.; Wilkins, M. H. F.; Hamilton, L. D. The Molecular Configuration of Deoxyribonucleic Acid. I. X-ray Diffraction Study of a Crystalline Form of the Lithium Salt. J. Mol. Biol. 1960, 2, 19–37.CrossRefGoogle Scholar
  3. 3.
    Langridge, R.; Marvin, D. A.; Seeds, W. E.; Wilson, H. R.; Hamilton, L. D. The Molecular Configuration of Deoxyribonucleic Acid. II. Molecular Models and their Fourier Transforms. J. Mol. Biol. 1960, 2, 38.CrossRefGoogle Scholar
  4. 4.
    Fuller, W.; Wilkins, M. H. F.; Wilson, H. R.; Hamilton, L. D.; Arnott, S. The Molecular Configuration of Deoxyribonucleic Acid. IV. X-ray Diffraction Study of the A Form. J. Mol. Biol. 1965, 12, 60.CrossRefGoogle Scholar
  5. 5.
    Wang, A. H. J.; Quigley, G. J.; Kolpak, F. J.; Crawford, J. L.; vanBoom, J. H.; van der Marel, G.; Rich, A. Molecular Structure of a Left-Handed Double Helical DNA Fragment at Atomic Resolution. Nature 1979, 282, 680.CrossRefGoogle Scholar
  6. 6.
    Franklin, R. E.; Gosling, R. G. The structure of sodium thymonucleate fibers. I. The influence of water content. Acta Crystallogr 1953, 6, 673.CrossRefGoogle Scholar
  7. 7.
    Kim, Y.; Geiger, J. H.; Hahn, S.; Sigler, P. B. Crystal Structure of a Yeast TBP/TATA-Box Complex. Nature 1993, 365, 512.CrossRefGoogle Scholar
  8. 8.
    Kim, J. L.; Nikolov, D. B.; Burley, S. K. Cocrystal Structure of TBP Recognizing the minor groove of a TATA element. Nature 1993, 365, 520.CrossRefGoogle Scholar
  9. 9.
    Florentiev, V. L.; Ivanov, V. I. RNA Polymerase: Two-step Mechanism with Overlapping Steps. Nature 1970, 228, 519.CrossRefGoogle Scholar
  10. 10.
    Beabealashvily, R. S.; Ivanov, V. I.; Minchenkova, L. E.; Savotchkina, L. P. RNA polymerase-DNA complexes I: The study of the conformation of nucleic acids at the growing point of RNA in an RNA polymerase-DNA system. Biochim. Biophys. Acta 1972, 259, 35.CrossRefGoogle Scholar
  11. 11.
    Setlow, P. DNA in dormant spores of Bacillus species is in an A-like conformation. Mol. Microbiol 1992, 6, 563.CrossRefGoogle Scholar
  12. 12.
    Ivanov, V. I.; Minchenkova, L. E.; Chernov, B. K.; McPhie, P.; Ryu, S.; Garges, S.; Barber, A. M.; Zhurkin, V. B.; Adhya, S. CRP-DNA Complexes: Inducing the A-like Form in the Binding Sites with an Extended Central Spacer. J. Mol. Biol. 1995, 245, 228.CrossRefGoogle Scholar
  13. 13.
    Eom, S. H.; Wang, J.; Steitz, T. A. Structure of Taq polymerase with DNA at the Polymerase Active Site. Nature 1996, 382, 278.CrossRefGoogle Scholar
  14. 14.
    Jones, S.; Heyningen, P.; Berman, H. M.; Thornton, J. M. Protein-DNA Interactions: A Structural Analysis. J. Mol. Biol. 1999, 287, 877.CrossRefGoogle Scholar
  15. 15.
    Brahm, J.; Mommaerts, W. F. H. M. A Study of Conformation of Nucleic Acids in Solution by Means of Circular Dichroism. J. Mol. Biol. 1964, 10, 73.CrossRefGoogle Scholar
  16. 16.
    Ivanov, V. I.; Minchenkova, L. E.; Minyat, E. E.; Frank-Kamenetskii, M. D.; Schyolkina, A. K. The B to A Transition of DNA in Solution. J. Mol. Biol. 1974, 87, 817.CrossRefGoogle Scholar
  17. 17.
    Vorlickova, M.; Minyat, E. E.; Kypr, J. Cooperative Changes in the Chiroptical Properties of DNA Induced by Methanol. Biopolymers 1984, 23, 1.CrossRefGoogle Scholar
  18. 18.
    Minyat, E. E.; Ivanov, V. I.; Kritzyn, A. M.; Minchenkova, L. E.; Schyolkina, A. K. Spermine and Spermidine-Induced B to A Transition of DNA in Solution. J. Mol. Biol. 1978, 128, 397.CrossRefGoogle Scholar
  19. 19.
    Xu, Q.; Shoemaker, R. K.; Braunlin, W. H. Induction of B-A transitions of Deoxyoligonucleotides by Multivalent Cations in Dilute Aqueous Solution. Biophys. J. 1993, 65, 1039.CrossRefGoogle Scholar
  20. 20.
    Ivanov, V. I.; Minchenkova, L. E. The A-form of DNA—In search of Biological Role (A Review). Mol. Biol. 1995, 28, 780.Google Scholar
  21. 21.
    Gorin, A. A.; Ulyanov, N. B.; Zhurkin, V. B. S-N Transition of the Sugar Ring in B-form DNA. Mol. Biol. 1990, 24, 1036.Google Scholar
  22. 22.
    Foloppe, N.; MacKerell, A. D. Intrinsic Conformational Properties of Deoxyribonucleosides: Implicated Role for Cytosine in the Equilibrium Among the A, B, and Z Forms of DNA. Biophys. J. 1999, 76, 3206.CrossRefGoogle Scholar
  23. 23.
    Gidden, J.; Ferzoco, A.; Baker, E. S.; Bowers, M. T. Duplex Formation and the Onset of Helicity in Poly d(CG)n Oligonucleotides in a Solvent-Free Environment. J. Am. Chem. Soc 2004, 126, 15132.CrossRefGoogle Scholar
  24. 24.
    Gidden, J.; Baker, E. S.; Ferzoco, A.; Bowers, M. T. Structural Motifs of DNA Complexes in the Gas Phase. Int. J. Mass Spectrom. 2005, 240, 183.CrossRefGoogle Scholar
  25. 25.
    Wyttenbach, T.; Kemper, P. R.; Bowers, M. T. Design of a New Electrospray Ion Mobility Mass Spectrometer. Int. J. Mass Spectrom. 2001, 212, 13.CrossRefGoogle Scholar
  26. 26.
    Mason, E. A.; McDaniel, E. W. Transport Properties of Ions in Gases Wiley: New York, NY, 1988.CrossRefGoogle Scholar
  27. 27.
    Cheatham, T. E.; Cieplak, P.; Kollman, P. A.. J. Biomol. Struct. Dyn. 1999, 16, 8458.CrossRefGoogle Scholar
  28. 28.
    Case, D. A.; Pearlman, D. A.; Caldwell, J. W.; Cheatham, T. E. III; Wang, J.; Ross, W. S.; Simmerling, C. L.; Darden, T. A.; Merz, K. M.; Stanton, R. V.; Cheng, A. L.; Vincent, J. J.; Crowley, M.; Tsui, V.; Gohlke, H.; Radmer, R. J.; Duan, Y.; Pitera, J.; Massova, I.; Seibel, G. L.; Singh, U. C.; Weiner, P. K.; Kollman, P. A. AMBER 7; University of California: San Francisco, CA, 2002.Google Scholar
  29. 29.
    HyperChem 7.0; Hypercube Inc., Gainesville, FL.Google Scholar
  30. 30.
    Mesleh, M. F.; Hunter, J. M.; Shvartsburg, A. A.; Schwartz, G. C.; Jarrold, M. F. Structural Information from Ion Mobility Measurements: Effects of the Long-Range Potential. J. Phys. Chem. 1996, 100, 16082.CrossRefGoogle Scholar
  31. 31.
    Shvartsburg, A. A.; Jarrold, M. F. An Exact Hard-Spheres Scattering Model for the Mobilities of Polyatomic Ions. Chem. Phys. Lett. 1996, 261, 86.CrossRefGoogle Scholar
  32. 32.
    Maher, L. J.; Wold, B.; Dervan, P. B. Inhibition of DNA Binding Proteins by Oligonucleotide-Directed Triple Helix Formation. Science 1989, 245, 725.CrossRefGoogle Scholar
  33. 33.
    Demidov, V. V.; Potaman, V. N.; Frank-Kamenetskii, M. D.; Egholm, M.; Buchard, O.; Sönnichsen, S. H.; Nielsen, P. E. Stability of Peptide Nucleic Acids in Human Serum and Cellular Extracts. Biochem. Pharmacol. 1994, 48, 1310.CrossRefGoogle Scholar
  34. 34.
    Tyagi, S.; Kramer, F. R. Molecular Beacons: Probes that Fluoresce upon Hybridization. Nat. Biotechnol. 1996, 14, 303.CrossRefGoogle Scholar
  35. 35.
    Holland, P. M.; Abramson, R. D.; Watson, R.; Gefland, D. H. Detection of Specific Polymerase Chain Reaction Product by Utilizing the 5′→3′ Exonuclease Activity of Thermus aquaticus DNA Polymerase. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 7276.CrossRefGoogle Scholar
  36. 36.
    Thelwell, N.; Millington, S.; Solinas, A.; Booth, J.; Brown, T. Mode of Action and Application of Scorpion Primers to Mutation Detection. Nucleic Acids Res. 2000, 28, 3752.CrossRefGoogle Scholar
  37. 37.
    Rueda, M.; Kalko, S. G.; Luque, F. J.; Orozco, M. The Structure and Dynamics of DNA in the Gas Phase. J. Am. Chem. Soc. 2003, 125, 8007.CrossRefGoogle Scholar
  38. 38.
    Veenstra, T. D. Electrospray Ionization Mass Spectrometry: A Promising New Technique in the Study of Protein/DNA Noncovalent Complexes. Biochem. Biophys. Res. Commun. 1999, 257, 1.CrossRefGoogle Scholar
  39. 39.
    Riazance, J. H.; Baase, W. A.; Johnson, W. C., Jr.; Hall, K.; Cruz, P.; Tinoco, I. Jr. Evidence for Z-form RNA by vacuum UV circular dichroism. Nucleic Acids Res. 1985, 13, 4983.CrossRefGoogle Scholar
  40. 40.
    Segersnolten, G. M. J.; Sijtsema, N. M.; Otto, C. Evidence for Hoogsteen GC Base Pairs in the Proton-Induced Transition from Right-Handed to Left-Handed Poly(dG-dC)·Poly(dG-dC). Biochemistry 1997, 36, 13241.CrossRefGoogle Scholar
  41. 41.
    Poehl, F. M.; Jovin, T. M. Salt-Induced Cooperative Conformational Change of a Synthetic DNA: Equilibrium and Kinetic Studies with Poly(dG-dC). J. Mol. Biol. 1972, 67, 375.CrossRefGoogle Scholar
  42. 42.
    Trantirek, L.; Stefl, R.; Vorlickova, M.; Koca, J.; Sklenar, V.; Kypr, J. An A-type Double Helix of DNA Having B-Type Puckering of the Deoxyribose Rings. J. Mol. Biol. 2000, 297, 907.CrossRefGoogle Scholar
  43. 43.
    Baker, E. S.; Hong, J. W.; Gaylord, B. S.; Bazan, G. C.; Bowers, M. T. PNA/dsDNA Complexes: Site-Specific Binding and dsDNA Biosensor Applications. J. Am. Chem. Soc. 2006, 128, 8484.CrossRefGoogle Scholar
  44. 44.
    Baker, E. S.; Bernstein, S. L.; Gabelica, V.; De Pauw, E.; Bowers, M. T. G-Quadruplexes in Telomeric Repeats Are Conserved in a Solvent-Free Environment. Int. J. Mass Spectrom. 2006, 253, 225.CrossRefGoogle Scholar
  45. 45.
    Schnier, P. D.; Klassen, J. S.; Strittmatter, E. F.; Williams, E. R. Activation Energies for Dissociation of Double Strand Oligonucleotide Anions: Evidence for Watson-Crick Base Pairing in Vacuo. J. Am. Chem. Soc. 1998, 120, 9605.CrossRefGoogle Scholar
  46. 46.
    Gabelica, V.; De Pauw, E. Comparison Between Solution-Phase Stability and Gas-Phase Kinetic Stability of Oligodeoxynucleotide Duplexes. J. Mass Spectrom. 2001, 36, 397.CrossRefGoogle Scholar
  47. 47.
    Gabelica, V.; Rosu, F.; Houssier, C.; De Pauw, E. Gas-Phase Thermal Denaturation of an Oligonucleotide Duplex and Its Complexes with Minor Groove Binders. Rapid Commun. Mass Spectrom. 2000, 14, 464.CrossRefGoogle Scholar
  48. 48.
    Gabelica, V.; De Pauw, E. Collision-Induced Dissociation of 16-mer DNA Duplexes with Various Sequences: Evidence for Conservation of the Double Helix Conformation in the Gas Phase. Int. J. Mass Spectrom. 2002, 219, 151.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations