Sizing large proteins and protein complexes by electrospray ionization mass spectrometry and ion mobility

  • Catherine S. Kaddis
  • Shirley H. Lomeli
  • Sheng Yin
  • Beniam Berhane
  • Marcin I. Apostol
  • Valerie A. Kickhoefer
  • Leonard H. Rome
  • Joseph A. LooEmail author
Focus: From Mobilities To Proteomes


Mass spectrometry (MS) and ion mobility with electrospray ionization (ESI) have the capability to measure and detect large noncovalent protein-ligand and protein-protein complexes. Using an ion mobility method of gas-phase electrophoretic mobility molecular analysis (GEMMA), protein particles representing a range of sizes can be separated by their electrophoretic mobility in air. Highly charged particles produced from a protein complex solution using electrospray can be manipulated to produce singly charged ions, which can be separated and quantified by their electrophoretic mobility. Results from ESI-GEMMA analysis from our laboratory and others were compared with other experimental and theoretically determined parameters, such as molecular mass and cryoelectron microscopy and X-ray crystal structure dimensions. There is a strong correlation between the electrophoretic mobility diameter determined from GEMMA analysis and the molecular mass for protein complexes up to 12 MDa, including the 93 kDa enolase dimer, the 480 kDa ferritin 24-mer complex, the 4.6 MDa cowpea chlorotic mottle virus (CCMV), and the 9 MDa MVP-vault assembly. ESI-GEMMA is used to differentiate a number of similarly sized vault complexes that are composed of different N-terminal protein tags on the MVP subunit. The average effective density of the proteins and protein complexes studied was 0.6 g/cm3. Moreover, there is evidence that proteins and protein complexes collapse or become more compact in the gas phase in the absence of water.


Ferritin Electrophoretic Mobility Electrospray Ionization Mass Spectrometry Cryoelectron Microscopy Charge Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

13361_2011_180701206_MOESM1_ESM.doc (176 kb)
Supplementary material, approximately 180 KB.


  1. 1.
    Bernstein, S. L.; Wyttenbach, T.; Baumketner, A.; Shea, J. E.; Bitan, G.; Teplow, D. B.; Bowers, M. T. Amyloid β-Protein: Monomer Structure and Early Aggregation States of Aβ42 and Its Pro19 Alloform. J. Am. Chem. Soc. 2005, 127, 2075–2084.CrossRefGoogle Scholar
  2. 2.
    Koeniger, S. L.; Clemmer, D. E. Resolution and Structural Transitions of Elongated States of Ubiquitin. J. Am. Soc. Mass Spectrom. 2007, 18, 322–331.CrossRefGoogle Scholar
  3. 3.
    Loo, J. A.; Berhane, B.; Kaddis, C. S.; Wooding, K. M.; Xie, Y.; Kaufman, S. L.; Chernushevich, I. V. Electrospray Ionization Mass Spectrometry and Ion Mobility Analysis of the 20S Proteasome Complex. J. Am. Soc. Mass Spectrom. 2005, 16, 998–1008.CrossRefGoogle Scholar
  4. 4.
    Ruotolo, B. T.; Giles, K.; Campuzano, I.; Sandercock, A. M.; Bateman, R. H.; Robinson, C. V. Evidence for Macromolecular Protein Rings in the Absence of Bulk Water. Science 2005, 310, 1658–1661.CrossRefGoogle Scholar
  5. 5.
    Sharon, M.; Witt, S.; Felderer, K.; Rockel, B.; Baumeister, W.; Robinson, C. V. 20S Proteasomes Have the Potential to Keep Substrates in Store for Continual Degradation. J. Biol. Chem. 2006, 281, 9569–9575.CrossRefGoogle Scholar
  6. 6.
    Loo, J. A. Studying Noncovalent Protein Complexes by Electrospray Ionization Mass Spectrometry. Mass Spectrom. Rev. 1997, 16, 1–23.CrossRefGoogle Scholar
  7. 7.
    Kaufman, S. L.; Kuchumov, A. R.; Kazakevich, M.; Vinogradov, S. N. Analysis of a 3.6-MDa Hexagonal Bilayer Hemoglobin from Lumbricus terrestris Using a Gas-Phase Electrophoretic Mobility Molecular Analyzer. Anal. Biochem. 1998, 259, 195–202.CrossRefGoogle Scholar
  8. 8.
    Bacher, G.; Szymanski, W. W.; Kaufman, S. L.; Zollner, P.; Blaas, D.; Allmaier, G. Charge-Reduced Nano-Electrospray Ionization Combined with Differential Mobility Analysis of Peptides, Proteins, Glycoproteins, Noncovalent Protein Complexes, and Viruses. J. Mass Spectrom. 2001, 36, 1038–1052.CrossRefGoogle Scholar
  9. 9.
    de la Mora, J. F.; Ude, S.; Thomson, B. A. The Potential of Differential Mobility Analysis Coupled to MS for the Study of Very Large Singly and Multiply Charged Proteins and Protein Complexes in the Gas Phase. Biotechnol. J. 2006, 1, 988–997.CrossRefGoogle Scholar
  10. 10.
    Kaufman, S. L.; Skogen, J. W.; Dorman, F. D.; Zarrin, F.; Lewis, K. C. Macromolecule Analysis Based on Electrophoretic Mobility in Air: Globular Proteins. Anal. Chem. 1996, 68, 1895–1904.CrossRefGoogle Scholar
  11. 11.
    Kaufman, S. L. Analysis of Biomolecules Using Electrospray and Nanoparticle Methods: The Gas-Phase Electrophoretic Mobility Molecular Analyzer (GEMMA). J. Aerosol. Sci. 1998, 29, 537–552.CrossRefGoogle Scholar
  12. 12.
    Scalf, M.; Westphall, M. S.; Krause, J.; Kaufman, S. L.; Smith, L. M. Controlling Charge States of Large Ions. Science 1999, 283, 194–197.CrossRefGoogle Scholar
  13. 13.
    Thomas, J. J.; Bothner, B.; Traina, J.; Benner, W. H.; Siuzdak, G. Electrospray Ion Mobility Spectrometry of Intact Viruses. Spectroscopy 2004, 18, 31–36.CrossRefGoogle Scholar
  14. 14.
    Myung, S.; Badman, E. R.; Lee, Y. J.; Clemmer, D. E. Structural Transitions of Electrosprayed Ubiquitin Ions Stored in an Ion Trap Over ∼10 ms to 30 s. J. Phys. Chem. A. 2002, 106, 9976–9982.CrossRefGoogle Scholar
  15. 15.
    Shelimov, K. B.; Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. Protein Structure in Vacuo: Gas-Phase Conformations of BPTI and Cytochrome c. J. Am. Chem. Soc. 1997, 119, 2240–2248.CrossRefGoogle Scholar
  16. 16.
    Kedersha, N. L.; Heuser, J. E.; Chugani, D. C.; Rome, L. H. Vaults. III. Vault Ribonucleoprotein Particles Open into Flower-Like Structures with Octagonal Symmetry. J. Cell Biol. 1991, 112, 225–235.CrossRefGoogle Scholar
  17. 17.
    Kedersha, N. L.; Miquel, M. C.; Bittner, D.; Rome, L. H. Vaults. II. Ribonucleoprotein Structures Are Highly Conserved among Higher and Lower Eukaryotes. J. Cell Biol. 1990, 110, 895–901.CrossRefGoogle Scholar
  18. 18.
    van Zon, A.; Mossink, M. H.; Scheper, R. J.; Sonneveld, P.; Wiemer, E. A. The Vault Complex. Cell. Mol. Life Sci. 2003, 60, 1828–1837.CrossRefGoogle Scholar
  19. 19.
    Kickhoefer, V. A.; Rajavel, K. S.; Scheffer, G. L.; Dalton, W. S.; Scheper, R. J.; Rome, L. H. Vaults are Up-Regulated in Multidrug-Resistant Cancer Cell Lines. J. Biol. Chem. 1998, 273, 8971–8974.CrossRefGoogle Scholar
  20. 20.
    Poderycki, M. J.; Kickhoefer, V. A.; Kaddis, C. S.; Raval-Fernandes, S.; Johansson, E.; Zink, J. I.; Loo, J. A.; Rome, L. H. The Vault Exterior Shell is a Dynamic Structure That Allows Incorporation of Vault-Associated Proteins Into Its Interior. Biochemistry 2006, 45, 12184–12193.CrossRefGoogle Scholar
  21. 21.
    Knutson, E. O.; Whitby, K. T. Aerosol Classification by Electric Mobility: Apparatus, Theory, and Applications. J. Aerosol Sci. 1975, 6, 443–451.CrossRefGoogle Scholar
  22. 22.
    Knutson, E. O.; Whitby, K. T. Accurate Measurement of Aerosol Electric Mobility Moments. J. Aerosol Sci. 1975, 6, 453–460.CrossRefGoogle Scholar
  23. 23.
    Hinds, W. C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles John Wiley and Sons, Inc: New York, N.Y, 1999 pp 42–72.Google Scholar
  24. 24.
    Tammet, H. Size and Mobility of Nanometer Particles, Clusters, and Ions. J. Aerosol Sci. 1995, 26, 459–475.CrossRefGoogle Scholar
  25. 25.
    Wang, S. C.; Flagan, R. C. Scanning Electrical Mobility Spectrometer. Aerosol Sci. Technol. 1990, 13, 230–240.CrossRefGoogle Scholar
  26. 26.
    Fuchs, N. A. On the Stationary Charge Distribution on Aerosol Particles in a Bipolar Ionic Atmosphere. Geofis. Pura. Appl. 1963, 56, 185–193.CrossRefGoogle Scholar
  27. 27.
    Wiedensohler, A. An Approximation of the Bipolar Charge Distribution for Particles in the Submicron Size Range. J. Aerosol Sci. 1988, 19, 387–389.CrossRefGoogle Scholar
  28. 28.
    Ude, S.; de la Mora, J. F.; Thomson, B. A. Charge-Induced Unfolding of Multiply Charged Polyethylene Glycol Ions. J. Am. Chem. Soc. 2004, 126, 12184–12190.CrossRefGoogle Scholar
  29. 29.
    Hogan, C. J.; Kettleson, E. M.; Ramaswami, B.; Chen, D. R.; Biswas, P. Charge Reduced Electrospray Size Spectrometry of Mega- and Giga-Dalton Complexes: Whole Viruses and Virus Fragments. Anal. Chem. 2006, 78, 844–852.CrossRefGoogle Scholar
  30. 30.
    Lebioda, L.; Stec, B.; Brewer, J. M. The Structure of Yeast Enolase at 2.2 -Å Resolution: An 8-fold β + α-Barrel with a Novel β β α α (β α)6 Topology. J. Biol. Chem. 1989, 264, 3685–3693.Google Scholar
  31. 31.
    Stec, B.; Lebioda, L. Refined Structure of Yeast Apo-Enolase at 2.25 Å Resolution. J. Mol. Biol. 1990, 211, 235–248.CrossRefGoogle Scholar
  32. 32.
    Kornblatt, M. J.; Lange, R.; Balny, C. Use of Hydrostatic Pressure to Produce “Native” Monomers of Yeast Enolase. Eur. J. Biochem. 2004, 271, 3897–3904.CrossRefGoogle Scholar
  33. 33.
    Loo, J. A. Electrospray Ionization Mass Spectrometry: A Technology for Studying Noncovalent Macromolecular Complexes. Int. J. Mass Spectrom. 2000, 200, 175–186.CrossRefGoogle Scholar
  34. 34.
    Xie, Y.; Zhang, J.; Yin, S.; Loo, J. A. Top-Down ESI-ECD-FT-ICR Mass Spectrometry Localizes Noncovalent Protein-Ligand Binding Sites. J. Am. Chem. Soc. 2006, 128, 14432–14433.CrossRefGoogle Scholar
  35. 35.
    Granier, T.; Gallois, B.; Dautant, A.; Langlois d’Estaintot, B.; Precigoux, G. Comparison of the Structures of the Cubic and Tetragonal Forms of Horse-Spleen Apoferritin. Acta Cryst. 1997, D53, 580–587.Google Scholar
  36. 36.
    Johnson, E.; Cascio, D.; Sawaya, M. R.; Gingery, M.; Schroder, I. Crystal Structures of a Tetrahedral Open Pore Ferritin from the Hyperthermophilic Archaeon. Archaeoglobus fulgidus. Structure 2005, 13, 637–648.CrossRefGoogle Scholar
  37. 37.
    Rhee, Y. M.; Sorin, E. J.; Jayachandran, G.; Lindahl, E.; Pande, V. S. Simulations of the Role of Water in the Protein-Folding Mechanism. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 6456–6461.CrossRefGoogle Scholar
  38. 38.
    Counterman, A. E.; Clemmer, D. E. Volumes of Individual Amino Acid Residues in Gas-Phase Peptide Ions. J. Am. Chem. Soc. 1999, 121, 4031–4039.CrossRefGoogle Scholar
  39. 39.
    Koeniger, S. L.; Merenbloom, S. I.; Sevugarajan, S.; Clemmer, D. E. Transfer of Structural Elements from Compact to Extended States in Unsolvated Ubiquitin. J. Am. Chem. Soc. 2006, 128, 11713–11719.CrossRefGoogle Scholar
  40. 40.
    Petsev, D. N.; Thomas, B. R.; Yau, S.; Vekilov, P. G. Interactions and Aggregation of Apoferritin Molecules in Solution: Effects of Added Electrolytes. Biophys. J. 2000, 78, 2060–2069.CrossRefGoogle Scholar
  41. 41.
    Bancroft, J. B.; Hiebert, E.; Rees, M. W.; Markham, R. Properties of Cowpea Chlorotic Mottle Virus, Its Protein, and Nucleic Acid. Virology 1968, 34, 224–239.CrossRefGoogle Scholar
  42. 42.
    Speir, J. A.; Munshi, S.; Wang, G.; Baker, T. S.; Johnson, J. E. Structures of the Native and Swollen Forms of Cowpea Chlorotic Mottle Virus Determined by X-Ray Crystallography and Cryo-Electron Microscopy. Structure 1995, 3, 63–78.CrossRefGoogle Scholar
  43. 43.
    Dasgupta, R.; Kaesberg, P. Complete Nucleotide Sequences of the Coat Protein Messenger RNAs of Brome Mosaic Virus and Cowpea Chlorotic Mottle Virus. Nucleic Acids Res. 1982, 10, 703–713.CrossRefGoogle Scholar
  44. 44.
    Durchschlag, H. Specific Volumes of Biological Macromolecules and Some Other Molecules of Biological Interest. In Thermodynamic Data for Biochemistry and Biotechnology Hinz H.-J., Ed.; Springer Verlag: Berlin, 1986; pp 45–128.CrossRefGoogle Scholar
  45. 45.
    Voss, N. R.; Gerstein, M. Calculation of Standard Atomic Volumes for RNA and Comparison with Proteins: RNA is Packed More Tightly. J. Mol. Biol. 2005, 346, 477–492.CrossRefGoogle Scholar
  46. 46.
    Stephen, A. G.; Raval-Fernandes, S.; Huynh, T.; Torres, M.; Kickhoefer, V. A.; Rome, L. H. Assembly of Vault-Like Particles in Insect Cells Expressing Only the Major Vault Protein. J. Biol. Chem. 2001, 276, 23217–23220.CrossRefGoogle Scholar
  47. 47.
    Mikyas, Y.; Makabi, M.; Raval-Fernandes, S.; Harrington, L.; Kickhoefer, V. A.; Rome, L. H.; Stewart, P. L. Cryoelectron Microscopy Imaging of Recombinant and Tissue Derived Vaults: Localization of the MVP N-Termini and VPARP. J. Mol. Biol. 2004, 344, 91–105.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  • Catherine S. Kaddis
    • 1
  • Shirley H. Lomeli
    • 1
  • Sheng Yin
    • 1
  • Beniam Berhane
    • 1
  • Marcin I. Apostol
    • 1
  • Valerie A. Kickhoefer
    • 2
  • Leonard H. Rome
    • 2
  • Joseph A. Loo
    • 1
    • 2
    Email author
  1. 1.Department of Chemistry and Biochemistry, David Geffen School of MedicineUniversity of California-Los AngelesLos AngelesUSA
  2. 2.Department of Biological Chemistry, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations