Advertisement

Free radical-induced site-specific peptide cleavage in the gas phase: Low-energy collision-induced dissociation in ESI- and MALDI mass spectrometry

  • Huiyong Yin
  • Almary Chacon
  • Ned A. Porter
  • Douglas S. Masterson
Articles

Abstract

Protein identification is routinely accomplished by peptide sequencing using mass spectrometry (MS) after enzymatic digestion. Site-specific chemical modification may improve peptide ionization efficiency or sequence coverage in mass spectrometry. We report herein that amino group of lysine residue in peptides can be selectively modified by reaction with a peroxycarbonate and the resulting lysine peroxycarbamates undergo homolytic fragmentation under conditions of low-energy collision-induced dissociation (CID) in electrospray ionization (ESI) and matrix-assisted laser desorption and ionization (MALDI) MS. Selective modification of lysine residue in peptides by our strategy can induce specific peptide cleavage at or near the lysine site. Studies using deuterated analogues of modified lysine indicate that fragmentation of the modified peptides involves apparent free-radical processes that lead to peptide chain fragmentation and side-chain loss. The formation of a-, c-, or z-types of ions in MS is reminiscent of the proposed free-radical mechanisms in low-energy electron capture dissociation (ECD) processes that may have better sequence coverage than that of the conventional CID method. This site-specific cleavage of peptides by free radical- promoted processes is feasible and such strategies may aid the protein sequencing analysis and have potential applications in top-down proteomics.

Keywords

Electron Capture Dissociation Peptide Cleavage Unmodified Peptide Aminyl Lysine Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aebersold, R.; Goodlett, D. R. Mass Spectrometry in Proteomics. Chem. Rev. 2001, 101, 269–296.CrossRefGoogle Scholar
  2. 2.
    Bogdanov, B.; Smith, R. D. Proteomics by FTICR Mass Spectrometry: Top Down and Bottom Up. Mass Spectrom. Rev. 2005, 24, 168–200.CrossRefGoogle Scholar
  3. 3.
    Domon, B.; Aebersold, R. Mass Spectrometry and Protein Analysis. Science 2006, 312, 212–217.CrossRefGoogle Scholar
  4. 4.
    Cooper, H. J.; Hakansson, K.; Marshall, A. G. The Role of Electron Capture Dissociation in Biomolecular Analysis. Mass Spectrom. Rev. 2005, 24, 201–222.CrossRefGoogle Scholar
  5. 5.
    Beardsley, R. L.; Karty, J. A.; Reilly, J. P. Enhancing the Intensities of Lysine-terminated Tryptic Peptide Ions in Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 2147–2153.CrossRefGoogle Scholar
  6. 6.
    Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R. Quantitative Analysis of Complex Protein Mixtures Using Isotope-coded Affinity Tags. Nat. Biotechnol. 1999, 17, 994–999.CrossRefGoogle Scholar
  7. 7.
    Kelleher, N. L.; Lin, H. Y.; Valaskovic, G. A.; Aaserud, D. J.; Fridriksson, E. K.; McLafferty, F. W. Top Down versus Bottom Up Protein Characterization by Tandem High-Resolution Mass Spectrometry. J. Am. Chem. Soc. 1999, 121, 806–812.CrossRefGoogle Scholar
  8. 8.
    Sze, S. K.; Ge, Y.; Oh, H.; McLafferty, F. W. Top-down Mass Spectrometry of a 29-kDa Protein for Characterization of Any Posttranslational Modification to within One Residue. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 1774–1779.CrossRefGoogle Scholar
  9. 9.
    Roepstorff, P.; Fohlman, J. Proposal for a Common Nomenclature for Sequence Ions in Mass Spectra of Peptides. Biol. Mass Spectrom. 1984, 11, 601.CrossRefGoogle Scholar
  10. 10.
    Masterson, D. S.; Yin, H.; Chacon, A.; Hachey, D. L.; Norris, J. L.; Porter, N. A. Lysine Peroxycarbamates: Free Radical-promoted Peptide Cleavage. J. Am. Chem. Soc. 2004, 126, 720–721.CrossRefGoogle Scholar
  11. 11.
    Chacon, A.; Masterson, D. S.; Yin, H.; Liebler, D. C.; Porter, N. A. N-Terminal Amino Acid Side-chain Cleavage of Chemically Modified Peptides in the Gas Phase: A Mass Spectrometry Technique for N-terminus Identification. Bioorg. Med. Chem. 2006, 14, 6213–6222.CrossRefGoogle Scholar
  12. 12.
    Reid, G. E.; McLuckey, S. A. Top Down Protein Characterization via Tandem Mass Spectrometry. J. Mass Spectrom. 2002, 37, 663–675.CrossRefGoogle Scholar
  13. 13.
    Yin, H.; Hachey, D. L.; Porter, N. A. Structural Analysis of Diacyl Peroxides by Electrospray Tandem Mass Spectrometry with Ammonium Acetate: Bond Homolysis of Peroxide-Ammonium and Peroxide-Proton Adducts. Rapid Commun. Mass Spectrom. 2000, 14, 1248–1254.CrossRefGoogle Scholar
  14. 14.
    Yin, H.; Hachey, D. L.; Porter, N. A. Analysis of Diacyl Peroxides by Ag+ Coordination Ionspray Tandem Mass Spectrometry: Free Radical Pathways of Complex Decomposition. J. Am. Soc. Mass Spectrom. 2001, 12, 449–455.CrossRefGoogle Scholar
  15. 15.
    Majetich, G.; Wheless, K. Remote Intramolecular Free Radical Functionalizations: An Update. Tetrahedron. 1995, 51, 7095–7129.CrossRefGoogle Scholar
  16. 16.
    O’Connor, P. B.; Lin, C.; Cournoyer, J. J.; Pittman, J. L.; Belyayev, M.; Budnik, B. A. Long-lived Electron Capture Dissociation Product Ions Experience Radical Migration via Hydrogen Abstraction. J. Am. Soc. Mass Spectrom. 2006, 17, 576–585.CrossRefGoogle Scholar
  17. 17.
    Chu, I. K.; Rodriquez, C. F.; Lau, T.-C.; Hopkinson, A. C.; Siu, K. W. M. Molecular Radical Cations of Oligopeptides. J. Phys. Chem. B. 2000, 104, 3393–3397.CrossRefGoogle Scholar
  18. 18.
    Hodyss, R.; Cox, H. A.; Beauchamp, J. L. Bioconjugates for Tunable Peptide Fragmentation: Free Radical Initiated Peptide Sequencing (FRIPS). J. Am. Chem. Soc. 2005, 127, 12436–12437.CrossRefGoogle Scholar
  19. 19.
    Leymarie, N.; Costello, C. E.; O’Connor, P. B. Electron Capture Dissociation Initiates a Free Radical Reaction Cascade. J. Am. Chem. Soc. 2003, 125, 8949–8958.CrossRefGoogle Scholar
  20. 20.
    Syrstad, E. A.; Stephens, D. D.; Turecek, F. Hydrogen Atom Adducts to the Amide Bond: Generation and Energetics of Amide Radicals in the Gas Phase. J. Phys. Chem. A. 2003, 107, 115–126.CrossRefGoogle Scholar
  21. 21.
    Zubarev, R. A. Reactions of Polypeptide Ions with Electrons in the Gas Phase. Mass Spectrom. Rev. 2003, 22, 57–77.CrossRefGoogle Scholar
  22. 22.
    Turecek, F.; Syrstad, E. A. Mechanism and Energetics of Intramolecular Hydrogen Transfer in Amide and Peptide Radicals and Cation-Radicals. J. Am. Chem. Soc. 2003, 125, 3353–3369.CrossRefGoogle Scholar
  23. 23.
    Horn, D. M.; Zubarev, R. A.; McLafferty, F. W. Automated De Novo Sequencing of Proteins by Tandem High-resolution Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 10313–10317.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  • Huiyong Yin
    • 1
    • 2
  • Almary Chacon
    • 1
  • Ned A. Porter
    • 1
  • Douglas S. Masterson
    • 3
  1. 1.Department of Chemistry, Center in Molecular Toxicology, Vanderbilt Institute of Chemical BiologyVanderbilt UniversityNashvilleUSA
  2. 2.Departments of Medicine and Chemistry, Division of Clinical PharmacologyVanderbilt UniversityNashville
  3. 3.Department of Chemistry and BiochemistryThe University of Southern MississippiHattiesburgUSA

Personalised recommendations