Cyclization reaction of peptide fragment ions during multistage collisionally activated decomposition: An inducement to lose internal amino-acid residues

Articles

Abstract

During characterization of some peptides (linear precursors of the cyclic peptides showing potential to be anticancer drugs) in an ion trap, it was noted that many internal amino acid residues could be lost from singly charged b ions. The phenomenon was not obvious at the first stage of collisionally activated decomposition (CAD), but was apparent at multiple stages of CAD. The unique fragmentation consisting of multiple steps is induced by a cyclization reaction of b ions, the mechanism of which has been probed by experiments of N-acetylation, MSn, rearranged-ion design, and activation-time adjustment. The fragmentation of synthetic cyclic peptides demonstrates that a cyclic peptide intermediate (CPI) formed by b ion cyclization exhibits the same fragmentation pattern as a protonated cyclic peptide. Although no rules for the cyclization reaction were discerned in the experiments of peptide modification, the fragmentations of a number of b ions indicate that the “Pro and Asn/Gln effects” can influence ring openings of CPIs. In addition, large-scale losses of internal residues from different positions of a-type ions have been observed when pure helium was used as collision gas. The fragmentation is initiated by a cyclization reaction forming an a-type ion CPI. This CPI with a fixed-charge structure cannot be influenced by the “Pro effect”, causing a selective ring opening at the amide bond Pro-Xxx rather than Xxx-Pro. With the knowledge of the unique fragmentations leading to internal residue losses, the misidentification of fragments and sequences of peptides may be avoided.

Supplementary material

13361_2011_180400663_MOESM1_ESM.doc (826 kb)
Supplementary material, approximately 845 KB.

References

  1. 1.
    Domon, B.; Aebersold, R. Mass Spectrometry and Protein Analysis. Science 2006, 312, 212–217.CrossRefGoogle Scholar
  2. 2.
    Aebersold, R.; Goodlett, D. R. Mass Spectrometry in Proteomics. Chem. Rev. 2001, 101, 269–295.CrossRefGoogle Scholar
  3. 3.
    Wysocki, V. H.; Resing, K. A.; Zhang, Q. F.; Cheng, G. L. Mass Spectrometry of Peptides and Proteins. Methods. 2005, 35, 211–222.CrossRefGoogle Scholar
  4. 4.
    Forbes, A. J.; Patrie, S. M.; Taylor, G. K.; Kim, Y. B.; Jiang, L. H.; Kelleher, N. L. Targeted Analysis and Discovery of Posttranslational Modifications in Proteins from Methanogenic Archaea by Top-Down MS. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 2678–2683.CrossRefGoogle Scholar
  5. 5.
    Zhong, H. Y.; Zhang, Y.; Wen, Z. H.; Li, L. Protein Sequencing by Mass Analysis of Polypeptide Ladders After Controlled Protein Hydrolysis. Nat. Biotechnol. 2004, 22, 1291–1296.CrossRefGoogle Scholar
  6. 6.
    Dworzanski, J. P.; Snyder, A. P.; Chen, R.; Zhang, H. Y.; Wishart, D.; Li, L. Identification of Bacteria Using Tandem Mass Spectrometry Combined with a Proteome Database and Statistical Scoring. Anal. Chem. 2004, 76, 2355–2366.CrossRefGoogle Scholar
  7. 7.
    Souza, B. M.; Marques, M. R.; Tomazela, D. M.; Eberlin, M. N.; Mendes, M. A.; Palma, M. S. Mass Spectrometric Characterization of Two Novel Inflammatory Peptides from the Venom of the Social Wasp. Polybia paulista. Rapid Commun. Mass Spectrom. 2004, 18, 1095–1102.CrossRefGoogle Scholar
  8. 8.
    Brinkworth, C. S.; Bowie, J. H.; Bilusich, D.; Tyler, M. J. The rothein peptides from the skin secretion of Roth’s tree frog Litoria rothii: Sequence determination using positive and negative ion electrospray mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 2716–2724.CrossRefGoogle Scholar
  9. 9.
    Williams, S. M.; Brodbelt, J. S. MSn Characterization of Protonated Cyclic Peptides and Metal Complexes. J. Am. Soc. Mass Spectrom. 2004, 15, 1039–1054.CrossRefGoogle Scholar
  10. 10.
    Ngoka, L. C. M.; Gross, M. L. Multistep Tandem Mass Spectrometry for Sequencing Cyclic Peptides in an Ion-Trap Mass Spectrometer. J. Am. Soc. Mass Spectrom. 1999, 10, 732–746.CrossRefGoogle Scholar
  11. 11.
    Taylor, S. W.; Kassel, D. B.; Tincu, J. A.; Craig, A. G. Fragmentation of Tunichrome Sp-1 is Dominated by an Unusual Gas-Phase Intramolecular Rearrangement. J. Mass Spectrom. 2003, 38, 1105–1109.CrossRefGoogle Scholar
  12. 12.
    O’Hair, R. A. J. The Role of Nucleophile-Electrophile Interactions in the Unimolecular and Bimolecular Gas-Phase Ion Chemistry of Peptides and Related Systems. J. Mass Spectrom. 2000, 35, 1377–1381.CrossRefGoogle Scholar
  13. 13.
    Polce, M. J.; Ren, D.; Wesdemiotis, C. Dissociation of the Peptide Bond in Protonated Peptides. J. Mass Spectrom. 2000, 35, 1391–1398.CrossRefGoogle Scholar
  14. 14.
    Schlosser, A.; Lehmann, W. D. Five-Membered Ring Formation in Unimolecular Reactions of Peptides: A Key Structural Element Controlling Low-Energy Collision-Induced Dissociation of Peptides. J. Mass Spectrom. 2000, 35, 1382–1390.CrossRefGoogle Scholar
  15. 15.
    Wysocki, V. H.; Tsaprailis, G.; Smith, L. L.; Breci, L. A. Mobile and Localized Protons: A Framework for Understanding Peptide Dissociation. J. Mass Spectrom. 2000, 35, 1399–1406.CrossRefGoogle Scholar
  16. 16.
    Paizs, B.; Suhai, S. Fragmentation Pathways of Protonated Peptides. Mass Spectrom. Rev. 2005, 24, 508–548.CrossRefGoogle Scholar
  17. 17.
    Tang, X. J.; Thibault, P.; Boyd, R. K. Fragmentation Reactions of Multiply-Protonated Peptides and Implications for Sequencing by Tandem Mass Spectrometry with Low-Energy Collision-Induced Dissociation. Anal. Chem. 1993, 65, 2824–2834.CrossRefGoogle Scholar
  18. 18.
    Tang, X. J.; Boyd, R. K. Rearrangements of Doubly Charged Acylium ions from Lysyl and Ornithyl Peptides. Rapid Commun. Mass Spectrom. 1994, 8, 678–686.CrossRefGoogle Scholar
  19. 19.
    Vachet, R. W.; Bishop, B. M.; Erickson, B. W.; Glish, G. L. Novel Peptide Dissociation: Gas-Phase Intramolecular Rearrangement of Internal Amino Acid Residues. J. Am. Chem. Soc. 1997, 119, 5481–5488.CrossRefGoogle Scholar
  20. 20.
    Craig, A. G.; Taylor, S. W. Fragmentation of a Novel Marine Peptide, Plicatamide, Involves an Unusual Gas-Phase Intramolecular Rearrangement. J. Am. Soc. Mass Spectrom. 2001, 12, 470–474.CrossRefGoogle Scholar
  21. 21.
    Fuchs, R.; Budzikiewicz, H. Rearrangement Reactions in the Electrospray Ionization Mass Spectra of Pyoverdins. Int. J. Mass Spectrom. 2001, 210, 603–612.CrossRefGoogle Scholar
  22. 22.
    Yague, J.; Paradela, A.; Ramos, M.; Ogueta, S.; Marina, A.; Barahona, F.; de Castro, J. A. L.; Vazquez, J. Peptide Rearrangement During Quadrupole Ion Trap Fragmentation: Added Complexity to MS/MS Spectra. Anal. Chem. 2003, 75, 1524–1535.CrossRefGoogle Scholar
  23. 23.
    Brinkworth, C. S.; Bilusich, D.; Bowie, J. H. The Unusual Loss of an Internal Val Residue from the (M − H) parent anions of the antimicrobial peptide citropin 1.1 and Synthetically Modified Analogues Fragmentations which Require a Specific Conformation of the Decomposing Anion. Int. J. Mass Spectrom. 2004, 236, 43–53.CrossRefGoogle Scholar
  24. 24.
    Harrison, A. G.; Young, A. B. Fragmentation of Protonated Oligoalanines: Amide Bond Cleavage and Beyond. J. Am. Soc. Mass Spectrom. 2004, 15, 1810–1819.CrossRefGoogle Scholar
  25. 25.
    Harrison, A. G.; Young, A. B.; Bleiholder, C.; Suhai, S.; Paizs, B. Scrambling of Sequence Information in Collision-Induced Dissociation of Peptides. J. Am. Chem. Soc. 2006, 128, 10364–10365.CrossRefGoogle Scholar
  26. 26.
    Jia, C. X.; Qi, W.; He, Z. M.; Qiao, B. Multistage Collisionally Activated Decomposition in an Ion Trap for Identification of Sequences, Structures and bn→bn-1 fragmentation pathways of protonated cyclic peptides. Eur. J. Mass Spectrom. 2006, 12, 235–245.CrossRefGoogle Scholar
  27. 27.
    Stefanowicz, P. Electrospray Mass Spectrometry and Tandem Mass Spectrometry of the Natural Mixture of Cyclic Peptides from Linseed. Eur. J. Mass Spectrom. 2004, 10, 665–671.CrossRefGoogle Scholar
  28. 28.
    Grewal, R. N.; El Aribi, H.; Harrison, A. G.; Siu, K. W. M.; Hopkinson, A. C. Fragmentation of Protonated Tripeptides: The Proline Effect Revisited. J. Phys. Chem. B. 2004, 108, 4899–4908.CrossRefGoogle Scholar
  29. 29.
    Jonsson, A. P.; Bergman, T.; Jornvall, H.; Griffiths, W. J.; Bratt, P.; Stromberg, N. Gln-Gly Cleavage: Correlation Between Collision-Induced Dissociation and Biological Degradation. J. Am. Soc. Mass Spectrom. 2001, 12, 337–342.CrossRefGoogle Scholar
  30. 30.
    Harrison, A. G. Fragmentation Reactions of Protonated Peptides Containing Glutamine or Glutamic Acid. J. Mass Spectrom. 2003, 38, 174–187.CrossRefGoogle Scholar
  31. 31.
    Jia, C. X.; Qi, W.; He, Z. M.; Yang, H. M.; Qiao, B. Synthesis of Heptapeptides and Analysis of Sequence by Tandem Ion Trap Mass Spectrometry. Cent. Eur. J. Chem. 2006, 4, 285–298.CrossRefGoogle Scholar
  32. 32.
    Roepstorff, P.; Fohlman, J. Proposal for a Common Nomenclature for Sequence Ions in Mass Spectra of Peptides. Biomed. Mass Spectrom. 1984, 11, 601.CrossRefGoogle Scholar
  33. 33.
    Biemann, K. Contributions of Mass Spectrometry to Peptide and Protein Structure. Biomed. Environ. Mass Spectrom. 1988, 16, 99–111.CrossRefGoogle Scholar
  34. 34.
    Pettit, G. R.; Lippert, J. W.; Taylor, S. R.; Tan, R.; Williams, M. D. Synthesis of Phakellistatin 11: A Micronesia (Chuuk) Marine Sponge Cyclooctapeptide. J. Nat. Prod. 2001, 64, 883–891.CrossRefGoogle Scholar
  35. 35.
    Forns, P.; Piro, J.; Cuevas, C.; Garcia, M.; Rubiralta, M.; Giralt, E.; Diez, A. Constrained Derivatives of Stylostatin 1. 1: Synthesis and Biological Evaluation as Potential Anticancer Agents. J. Med. Chem. 2003, 46, 5825–5833.CrossRefGoogle Scholar
  36. 36.
    Vachet, R. W.; Ray, K. L.; Glish, G. L. Origin of Product Ions in the MS/MS Spectra of Peptides in a Quadrupole Ion Trap. J. Am. Soc. Mass Spectrom. 1998, 9, 341–344.CrossRefGoogle Scholar
  37. 37.
    Paizs, B.; Szlavik, Z.; Lendvay, G.; Vekey, K.; Suhai, S. Formation of a2+ ions of protonated peptides: An ab Initio Study. Rapid Commun. Mass Spectrom. 2000, 14, 746–755.CrossRefGoogle Scholar
  38. 38.
    Chen, X. H.; Turecek, F. Simple b-Ions Have Cyclic Oxazolone Structures: A Neutralization-Reionization Mass Spectrometric and Computational Study of Oxazolone Radicals. J. Am. Soc. Mass Spectrom. 2005, 16, 1941–1956.CrossRefGoogle Scholar
  39. 39.
    Jegorov, A.; Paizs, B.; Kuzma, M.; Zabka, M.; Landa, Z.; Sulc, M.; Barrow, M. P.; Havlicek, V. Extraribosomal Cyclic Tetradepsipeptides Beauverolides: Profiling and Modeling the Fragmentation Pathways. J. Mass Spectrom. 2004, 39, 949–960.CrossRefGoogle Scholar
  40. 40.
    Paizs, B.; Suhai, S. Towards Understanding the Tandem Mass Spectra of Protonated Oligopeptides. 1: Mechanism of Amide Bond Cleavage. J. Am. Soc. Mass Spectrom. 2004, 15, 103–113.CrossRefGoogle Scholar
  41. 41.
    Smith, L. L.; Herrmann, K. A.; Wysocki, V. H. Investigation of Gas-Phase Ion Structure for Proline-Containing b2 Ion. J. Am. Soc. Mass Spectrom. 2006, 17, 20–28.CrossRefGoogle Scholar
  42. 42.
    Davies, J. S. The Cyclization of Peptides and Depsipeptides. J. Pept. Sci. 2003, 9, 471–501.CrossRefGoogle Scholar
  43. 43.
    Pettit, G. R.; Gao, F.; Cerny, R. L.; Doubek, D. L.; Tackett, L. P.; Schmidt, J. M.; Chapuis, J. C. Antineoplastic Agents. 278. Isolation and Structure of Axinastatins 2 and 3 from a Western Caroline Island Marine Sponge. J. Med. Chem. 1994, 37, 1165–1168.CrossRefGoogle Scholar
  44. 44.
    Eckart, K. Mass Spectrometry of Cyclic Peptides. Mass Spectrom. Rev. 1994, 13, 23–55.CrossRefGoogle Scholar
  45. 45.
    Schilling, B.; Wang, W.; McMurray, J. S.; Medzihradszky, K. F. Fragmentation and Sequencing of Cyclic Peptides by Matrix-Assisted Laser Desorption/Ionization Post-Source Decay Mass Spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 2174–2179.CrossRefGoogle Scholar
  46. 46.
    Vachet, R. W.; Asam, M. R.; Glish, G. L. Secondary Interactions Affecting the Dissociation Patterns of Arginine-Containing Peptide Ions. J. Am. Chem. Soc. 1996, 118, 6252–6256.CrossRefGoogle Scholar
  47. 47.
    Fang, S. P.; Takao, T.; Satomi, Y.; Mo, W. J.; Shimonishi, Y. Novel Rearranged Ions Observed for Protonated Peptides via Metastable Decomposition in Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2000, 11, 345–351.CrossRefGoogle Scholar
  48. 48.
    Sharp, J. S.; Tomer, K. B. Formation of [b(n−1) + OH + H]+ Ion Structural Analogs by Solution-Phase Chemistry. J. Am. Soc. Mass Spectrom. 2005, 16, 607–621.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  1. 1.Chemical Engineering Research Center, School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations