Current measurements within the electrospray emitter

Articles

Abstract

A movable disc-like wire probe electrode placed inside the electrospray (ES) capillary was used to measure currents flowing within the ES device for the first time. Currents were measured between the wire probe and the ES capillary. Current maps revealing measured current versus wire probe position were generated for a variety of solution conditions in the positive and negative ion modes and are compared to potential maps. The electrospray device was found to subsist on highly stable total currents; this current regulator aspect of the ES device showed remarkable resiliency regardless of the proportion of current produced at the wire probe electrode versus the ES capillary. However, kinks observed in the current and potential maps are attributed to adsorbed air participating in electrochemical reactions, and turbulence in solution flow in the region of the Taylor cone. From differential electrospray emitter potential (DEEP) maps, current maps, and cyclic voltammetry experiments performed at different wire probe locations, evidence is provided for separate regimes of current flow in the bulk solution and in the thin “skin” of highly conductive electrolyte constituting the outer surface (air interface) of the Taylor cone. Current maps reveal that current is drawn more evenly along the length of the ES capillary when solutions are highly conductive, in agreement with previous results for DEEP maps. In less conductive solutions, the area close to the capillary exit contributes more heavily to current production. Evidence that contaminant participation in electrochemical processes occurring within the electrospray device can be largely responsible for production of the excess charge in ES droplets is also provided. These investigations complement previous DEEP mapping studies to further elucidate the details of the electrochemical processes occurring within the electrospray device.

References

  1. 1.
    Bailey, A. G. Electrostatic Spraying of Liquids, John Wiley & Sons: New York, 1988; pp 1–193.Google Scholar
  2. 2.
    Kebarle, P.; Ho, Y. On the Mechanism of Electrospray Mass Spectrometry. In Electrospray Ionization Mass Spectrometry, Cole, R. B., Ed.; John Wiley & Sons: New York, 1997; pp 3–63.Google Scholar
  3. 3.
    Van Berkel, G. J. The Electrolytic Nature of Electrospray. In Electrospray Ionization Mass Spectrometry, Cole, R. B., Ed., John Wiley & Sons: New York, 1997; pp 65–105.Google Scholar
  4. 4.
    Blades, A. T. Ikonomou, M. G. Kebarle, P. Mechanism of Electrospray Mass Spectrometry: Electrospray as an Electrolysis Cell. Anal. Chem. 1991, 63, 2109–2114.CrossRefGoogle Scholar
  5. 5.
    Juhasz, P. Ikonomou, M. G. Blades, A. T. Kebarle, P. Electrospray, Mechanism and Performance. In Methods and Mechanisms for Producing Ions from Large Molecules; Standing, K. G.; Ens, W., Eds.; Plenum Press: New York, 1991; pp. 171–183.CrossRefGoogle Scholar
  6. 6.
    de la Mora, J. F. Van Berkel, G. J. Enke, C. G. Cole, R. B. Martinez-Sanchez, M. Fenn, J. B. Electrochemical Processes in Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2000, 35, 939–952.CrossRefGoogle Scholar
  7. 7.
    Cole, R. B. Some Tenets Pertaining to Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2000, 35, 763–772.CrossRefGoogle Scholar
  8. 8.
    Van Berkel, G. J. Zhou, F. Characterization of an Electrospray Ion Source as a Controlled Current Electrolytic Cell. Anal. Chem. 1995, 67, 2916–2923.CrossRefGoogle Scholar
  9. 9.
    Van Berkel, G. J. Zhou, F. Electrospray as a Controlled-Current Electrolytic Cell: Electrochemical Ionization of Neutral Analytes for Detection by Electrospray Mass Spectrometry. Anal. Chem. 1995, 67, 3958–3964.CrossRefGoogle Scholar
  10. 10.
    Hager, D. B. Dovichi, N. J. Behavior of Microscopic Liquid Droplets Near a Strong Electrostatic Field: Droplet Electrospray. Anal. Chem. 1994, 66, 1593–1594.CrossRefGoogle Scholar
  11. 11.
    Li, Y. Pozniak, B. P. Cole, R. B. Mapping of Potential Gradients within the Electrospray Capillary. Anal. Chem. 2003, 75, 6987–6994.CrossRefGoogle Scholar
  12. 12.
    Pozniak, B. P. Cole, R. B. Negative Ion Mode Evolution of Potential Buildup and Mapping of Potential Gradients within the Electrospray Emitter. J. Am. Soc. Mass Spectrom. 2004, 15, 1737–1747.CrossRefGoogle Scholar
  13. 13.
    Bard, A. J.; Faulkner, L. R. Electrochemical Methods. Fundamentals and Applications, John Wiley & Sons: New York, 1980.Google Scholar
  14. 14.
    Trasatti, S. The Electrode Potential. In Comprehensive Treatise of Electrochemistry, Vol. 1, Bockris, J. O’M.; Conway, B. E.; Yeager, E., Eds.; Plenum Press: New York, 1980; pp 45–82.CrossRefGoogle Scholar
  15. 15.
    Levich, V. Physicochemical Hydrodynamics, Prentice Hall: Englewood Cliffs, NJ, 1962; pp 231–260.Google Scholar
  16. 16.
    Ibl, N. Fundamentals of Transport Phenomena in Electrolytic Systems. In Comprehensive Treatise of Electrochemistry, Vol. 6, Bockris, J. O’M.; Conway, B. E.; Yeager, E., Eds.; Plenum Press: New York, 1980; pp 1–63.Google Scholar
  17. 17.
    Ibl, N. Current Distribution. In Comprehensive Treatise of Electrochemistry, Vol. 6, Bockris, J. O’M.; Conway, B. E.; Yeager, E., Eds.; Plenum Press: New York, 1980; pp 239–315.Google Scholar
  18. 18.
    Newman, J. Transport Processes in Electrolytic Solutions. In Advances in Electrochemistry and Electrochemical Engineering, Vol. 5, Tobias, C. W., Ed.; Interscience Publishers, New York, 1967; pp 87C136.Google Scholar
  19. 19.
    West, A. C.; Newman, J. Determination of Current Distributions Governed by Laplace’s Equation. In Modern Aspects of Electrochemistry vol. 23, Conway, B. E.; Bockris, J. O’M.; White, R. E., Eds., Plenum Press, New York, 1992; pp 101–148.Google Scholar
  20. 20.
    Bockris, J. O’M.; Reddy, K. N. Modern Electrochemistry, Vol. 1, 2nd ed., Plenum Press: New York, 1998.Google Scholar
  21. 21.
    Xu, X. Lu, W. Cole, R. B. On-line Probe for Fast Electrochemistry/Electrospray Mass Spectrometry: Investigation of Polycyclic Aromatic Hydrocarbons. Anal. Chem. 1996, 68, 4244–4253.CrossRefGoogle Scholar
  22. 22.
    Clopeau, M. Prunet-Foch, B. Electrohydrodynamic Spraying Functioning Modes: A Critical Review. J. Aerosol Sci. 1994, 25, 1021–1036.CrossRefGoogle Scholar
  23. 23.
    de la Mora, J. F. Loscertales, I. G. The Current Emitted by Highly Conducting Taylor Cones. J. Fluid Mech. 1994, 260, 155–184.CrossRefGoogle Scholar
  24. 24.
    Van Berkel, G. J. Giles, G. E. Bullock, J. S., IV; Gray, L. J. Computational Simulation of Redox Reactions within a Metal Electrospray Emitter. Anal. Chem. 1999, 71, 5288–5296.CrossRefGoogle Scholar
  25. 25.
    Van Berkel, G. J. Electrolytic Deposition of Metals on to the High Voltage Contact in an Electrospray Emitter: Implications for Gas-phase Ion Formation. J. Mass Spectrom. 2000, 35, 773–783.CrossRefGoogle Scholar
  26. 26.
    Hayati, I. Bailey, A. I. Tadros, T. F. Mechanism of Stable Jet Formation in Electrohydrodynamic Atomization. Nature. 1986, 319, 41–43.CrossRefGoogle Scholar
  27. 27.
    Hayati, I. Bailey, A. I. Tadros, T. F. Investigations into the Mechanisms of Electrohydrodynamic Spraying of Liquids: I. Effect of Electric Field and the Environment on Pendant Drops and Factors Affecting the Formation of Stable Jets and Atomization. J. Colloid Interface Sci. 1987, 117, 205–221.CrossRefGoogle Scholar
  28. 28.
    Hayati, I. Bailey, A. I. Tadros, T. F. Investigations into the Mechanisms of Electrohydrodynamic Spraying of Liquids: II. Mechanisms of Stable Jet Formation and Electrical Forces Acting on a Liquid Cone. J. Colloid Interface Sci. 1987, 117, 222–230.CrossRefGoogle Scholar
  29. 29.
    Pozniak, B. P.; Cole, R. B. Ambient Gas Influence on Electrospray Potential as Revealed by DEEP Mapping Within the Electrospray Capillary, A 040716. Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics, Nashville, TN, May 2004.Google Scholar
  30. 30.
    Alkire, R. Mirarefi, A. A. The Current Distribution Within Tubular Electrodes under Laminar Flow. J. Electrochem. Soc. 1973, 120, 1507–1515.CrossRefGoogle Scholar
  31. 31.
    Alkire, R. Mirarefi, A. A. Current Distribution in a Tubular Electrode under Laminar Flow: One Electrode Reaction. J. Electrochem. Soc. 1977, 124, 1043–1049.CrossRefGoogle Scholar
  32. 32.
    Bladel, W. J. Klatt, N. L. Reversible Charge Transfer at the Tubular Platinum Electrode. Anal. Chem. 1966, 38, 879–883.CrossRefGoogle Scholar
  33. 33.
    Barrero, A. Gañán-Calvo, A. M. Davila, J. Palacio, A. Gomez-Gonzalez, E. Low and High Reynolds Number Flows inside Taylor Cones. Phys. Rev. E. 1998, 58, 7309–7314.CrossRefGoogle Scholar
  34. 34.
    Tang, L. Kebarle, P. Effect of the Conductivity of the Electrosprayed Solution on the Electrosprayed Current: Factors Determining Analyte Sensitivity in Electrospray Mass Spectrometry. Anal. Chem. 1991, 63, 2709–2715.CrossRefGoogle Scholar
  35. 35.
    Dibble, T. Bandyopadhyay, S. Ghoroghchian, J. Smith, J. J. Sarfarazi, F. Fleischmann, M. Pons, S. Electrochemistry at Very High Potentials: Oxidation of the Rare Gases and Other Gases in Nonaqueous Solvents at Ultramicroelectrodes. J. Phys. Chem. 1986, 90, 5275–5277.CrossRefGoogle Scholar
  36. 36.
    Popp, F. Schultz, H. P. Electrolytic Reduction of Organic Compounds. Chem. Rev. 1961, 61, 19–40.Google Scholar
  37. 37.
    Van Berkel, G. J. Asano, G. K. Granger, M. C. Controlling Analyte Electrochemistry in an Electrospray Ion Source with a Three Electrode Emitter Cell. Anal. Chem. 2004, 76, 1493–1499.CrossRefGoogle Scholar
  38. 38.
    Van Berkel, G. J. Kertesz, V. Ford, M. J. Granger, M. C. Efficient Analyte Oxidation in an Electrospray Ion Source Using a Porous Flow-Through Electrode Emitter. J. Am. Soc. Mass Spectrom. 2004, 15, 1755–1766.CrossRefGoogle Scholar
  39. 39.
    Lu, W. Xu, X. Cole, R. B. On-Line Linear Sweep Voltammetry-Electrospray Mass Spectrometry. Anal. Chem. 1997, 69, 2478–2484.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of New OrleansNew Orleans

Personalised recommendations