Influence of coulombic repulsion on the dissociation pathways and energetics of multiprotein complexes in the gas phase

  • Igor Sinelnikov
  • Elena N. Kitova
  • John S. Klassen
Articles

Abstract

Thermal dissociation experiments, implemented with blackbody infrared radiative dissociation and Fourier-transform ion cyclotron resonance mass spectrometry, are performed on gaseous protonated and deprotonated ions of the homopentameric B subunits of Shiga toxin 1 (Stx1 B5) and Shiga toxin 2 (Stx2 B5) and the homotetramer streptavidin (S4). Dissociation of the gaseous, multisubunit complexes proceeds predominantly by the loss of a single subunit. Notably, the fractional partitioning of charge between the product ions, i.e., the leaving subunit and the resulting multimer, for a given complex is, within error, constant over the range of charge states investigated. The Arrhenius activation parameters (Ea, A) measured for the loss of subunit decrease with increasing charge state of the complex. However, the parameters for the protonated and deprotonated ions, with the same number of charges, are indistinguishable. The influence of the complex charge state on the dissociation pathways and the magnitude of the dissociation Ea are modeled theoretically with the discrete charge droplet model (DCDM) and the protein structure model (PSM), wherein the structure of the subunits is considered. Importantly, the major subunit charge states observed experimentally for the Stx1 B5n± ions correspond to the minimum energy charge distribution predicted by DCDM and PSM assuming a late dissociative transition-state (TS); while for structurally-related Stx2 B5n+ ions, the experimental charge distribution corresponds to an early TS. It is proposed that the lateness of the TS is related, in part, to the degree of unfolding of the leaving subunit, with Stx1 B being more unfolded than Stx2 B. PSM, incorporating significant subunit unfolding is necessary to account for the product ions observed for the S4n+ ions. The contribution of Coulombic repulsion to the dissociation Ea is quantified and the intrinsic activation energy is estimated for the first time.

References

  1. 1.
    Loo, J. A.. Mass Spectrom. Rev 1997, 16, 1–23.CrossRefGoogle Scholar
  2. 2.
    Fandrich, M.; Tito, M. A.; Leroux, M. R.; Rostom, A. A.; Hartl, F. U.; Dobson, C. M.; Robinson, C. V.. Proc. Natl. Acad. Sci. U.S.A 2000, 97, 14151–14155.CrossRefGoogle Scholar
  3. 3.
    Sobott, F.; Benesch, J. L. P.; Vierling, E.; Robinson, C. V.. J. Biol. Chem 2002, 277, 38921–38929.CrossRefGoogle Scholar
  4. 4.
    Keetch, C. A.; Bromley, E. H. C.; McCammon, M. G.; Robinson, C. V.. J. Biol. Chem 2005, 280, 41667–41674.CrossRefGoogle Scholar
  5. 5.
    Daniel, J. M.; Friess, S. D.; Rajagopalan, S.; Wendt, S.; Zenobi, R.. Int. J. Mass Spectrom 2002, 216, 1–27.CrossRefGoogle Scholar
  6. 6.
    Winston, R. L.; Fitzgerald, M. C.. Mass Spectrom. Rev 1997, 16, 165–179.CrossRefGoogle Scholar
  7. 7.
    Veenstra, T. D.. Biochem. Biophys. Res. Commun 1999, 257, 1–5.CrossRefGoogle Scholar
  8. 8.
    Benesch, J. L. P.; Robinson, C. V.. Curr. Opin. Struct. Biol 2006, 16, 245–251.CrossRefGoogle Scholar
  9. 9.
    Heck, A. J. R.; van den Heuvel, R. H. H.. Mass Spectrom. Rev 2004, 23, 368–389.CrossRefGoogle Scholar
  10. 10.
    Versluis, C.; Heck, A. J. R.. Int. J. Mass Spectrom 2001, 210, 637–649.CrossRefGoogle Scholar
  11. 11.
    Felitsyn, N.; Kitova, E. N.; Klassen, J. S.. J. Am. Soc. Mass Spectrom 2002, 13, 1432–1442.CrossRefGoogle Scholar
  12. 12.
    Jurchen, J. C.; Williams, E. R.. J. Am. Chem. Soc 2003, 125, 2817–2826.CrossRefGoogle Scholar
  13. 13.
    Jurchen, J. C.; Garcia, D. E.; Williams, E. R.. J. Am. Soc. Mass Spectrom 2004, 15, 1408–1415.CrossRefGoogle Scholar
  14. 14.
    Mauk, M. R.; Mauk, A. G.; Chen, Y. L.; Douglas, D. J.. J. Am. Soc. Mass Spectrom 2002, 13, 59–71.CrossRefGoogle Scholar
  15. 15.
    Lightwahl, K. J.; Schwartz, B. L.; Smith, R. D.. J. Am. Chem. Soc 1994, 116, 5271–5278.CrossRefGoogle Scholar
  16. 16.
    Schwartz, B. L.; Bruce, J. E.; Anderson, G. A.; Hofstadler, S. A.; Rockwood, A. L.; Smith, R. D.; Chilkoti, A.; Stayton, P. S.. J. Am. Soc. Mass Spectrom 1995, 6, 459–465.CrossRefGoogle Scholar
  17. 17.
    Sobott, F.; McCammon, M. G.; Robinson, C. V.. Int. J. Mass Spectrom 2003, 230, 193–200.CrossRefGoogle Scholar
  18. 18.
    Felitsyn, N.; Kitova, E. N.; Klassen, J. S.. Anal. Chem 2001, 73, 4647–4661.CrossRefGoogle Scholar
  19. 19.
    van den Heuvel, R. H.; Heck, A. J. R.. Curr. Opin. Chem. Biol 2004, 8, 519–526.CrossRefGoogle Scholar
  20. 20.
    Pinkse, M. W.; Maier, C. S.; Kim, J. I.; Oh, B. H.; Heck, A. J.. J. Mass Spectrom 2003, 38, 315–320.CrossRefGoogle Scholar
  21. 21.
    Rostom, A. A.; Fucini, P.; Benjamin, D. R.; Juenemann, R.; Nierhaus, K. H.; Hartl, F. U.; Dobson, C. M.; Robinson, C. V.. Proc. Natl. Acad. Sci. U.S.A 2000, 97, 5185–5190.CrossRefGoogle Scholar
  22. 22.
    Loo, J. A.; Berhane, B.; Kaddis, C. S.; Wooding, K. M.; Xie, Y.; Kaufman, S. L.; Chernushevich, I. V.. J. Am. Soc. Mass Spectrom 2005, 16, 998–1008.CrossRefGoogle Scholar
  23. 23.
    Benesch, J. L. P.; Sobott, F.; Robinson, C. V.. Anal. Chem 2003, 75, 2208–2214.CrossRefGoogle Scholar
  24. 24.
    Breuker, K.; McLafferty, F. W.. Angew. Chem. Int. Ed 2003, 42, 4900–4904.CrossRefGoogle Scholar
  25. 25.
    Sobott, F.; Robinson, C. V.. Int. J. Mass Spectrom 2004, 236, 25–32.CrossRefGoogle Scholar
  26. 26.
    Ryce, S. A.; Wyman, R. R.. Can. J. Phys 1970, 48, 2571–2576.CrossRefGoogle Scholar
  27. 27.
    Csiszar, S.; Thachuk, M.. Can. J. Chem 2004, 82, 1736–1744.CrossRefGoogle Scholar
  28. 28.
    Marcato, P.; Mulvey, G.; Read, R. J.; Vander Helm, K.; Nation, P. N.; Armstrong, G. D.. J. Infect. Dis 2001, 183, 435–443.CrossRefGoogle Scholar
  29. 29.
    Mulvey, G.; Vanmaele, R.; Mrazek, M.; Cahill, M.; Armstrong, G. D.. J. Microbiol. Methods 1998, 32, 247–252.CrossRefGoogle Scholar
  30. 30.
    Hunter, E. P.; Lias, S. G.. J. Phys. Chem. Ref. Data 1998, 27, 3, 413–656.CrossRefGoogle Scholar
  31. 31.
    Taft, R. W.; Anvia, F.; Taagepera, M.; Catalan, J.; Elguero, J.. J. Am. Chem. Soc 1986, 108, 3237–3239.CrossRefGoogle Scholar
  32. 32.
    Catalina, M. I.; van den Heuvel, R. H. H.; van Duijn, E.; Heck, A. J. R.. Chem. Eur. J 2005, 11, 960–968.CrossRefGoogle Scholar
  33. 33.
    Fischer, H.; Polikarpov, I.; Craievich, A. F.. Protein Sci 2004, 13, 2825–2828.CrossRefGoogle Scholar
  34. 34.
    Gas-Phase Ion Chemistry Vol. II; Bowers, M. T., Ed.; Academic Press: New York, 1979, Chap. XI.Google Scholar
  35. 35.
    Ling, H.; Boodhoo, A.; Hazes, B.; Cummings, M. D.; Armstrong, G. D.; Brunton, J. L.; Read, R. J.. Biochemistry 1998, 37, 1777–1788. Atomic coordinates available at http://www.rcsb.org/pdb (PDB ID 1BOS).CrossRefGoogle Scholar
  36. 36.
    Fraser, M. E.; Fujinaga, M.; Cherney, M. M.; Melton-Celsa, A. R.; Twiddy, E. M.; O’Brien, A. D.; James, M. N. G.. J. Biol. Chem 2004, 279, 27511–27517. Atomic coordinates available at http://www.rcsb.org/pdb (PDB ID 1R4P).CrossRefGoogle Scholar
  37. 37.
    Freitag, S.; Le Trong, I.; Klumb, L.; Stayton, P. S.; Stenkamp, R. E.. Protein Sci 1997, 6, 1157–1166. Atomic coordinates available at http://www.rcsb.org/pdb (PDB ID 1SWB).CrossRefGoogle Scholar
  38. 38.
    Kitova, E. N.; Daneshfar, R.; Marcato, P.; Mulvey, G. L.; Armstrong, G.; Klassen, J. S.. J. Am. Soc. Mass Spectrom 2005, 16, 1957–1968.CrossRefGoogle Scholar
  39. 39.
    Wang, W. J.; Kitova, E. N.; Sun, J. X.; Klassen, J. S.. J. Am. Soc. Mass Spectrom 2005, 16, 1583–1594.CrossRefGoogle Scholar
  40. 40.
    Peshke, M.; Blades, A.; Kebarle, P.. J. Am. Chem. Soc 2002, 124, 11519–11530.CrossRefGoogle Scholar
  41. 41.
    Benesch, J. L. P.; Aquilina, J. A.; Ruotolo, B. T.; Sobott, F.; Robinson, C. V.. Chem. Biol 2006, 13, 597–605.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  • Igor Sinelnikov
    • 1
  • Elena N. Kitova
    • 1
  • John S. Klassen
    • 1
  1. 1.Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations