Characterization of synthesized titanium oxide nanoclusters by MALDI-TOF mass spectrometry

  • Bing Guan
  • Weigang Lu
  • Jiye Fang
  • Richard B. Cole
Articles

Abstract

Titania represents an important material that has wide applications. The bactericidal efficiency of TiO2 has been shown to be dependent on the size of the nanoparticles, so it is important to be able to reliably estimate their dimensions. In this study, a stable TiO2 cluster suspension is produced by the thermal solvent process, and ultrasmall clusters (<1 nm) with different sizes are obtained by size-selection treatment. MALDI-TOF-MS and LDI-TOF-MS are shown to be useful for characterization of these ultrasmall nanoparticles. Peak maxima are found to correlate with nanoparticle size, and the possibility of using these mass spectrometry—based approaches to estimate nanoparticle size is affirmed. The size distributions of TiO2 nanoparticles obtained from MALDI- and LDI-TOF-MS are in good agreement with parallel TEM observations. Finally, PSD analysis of inorganic nanomaterials is performed and valuable information about the structure of analytes has been obtained.

References

  1. 1.
    Fujishima, A.; Rao, T. N.; Tryk, D. A. Photocatalysts and Diamond Electrodes. Electrochim. Acta 2000, 45, 4683–4690.CrossRefGoogle Scholar
  2. 2.
    Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96.CrossRefGoogle Scholar
  3. 3.
    Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Photocatalysis on TiO2 Surfaces—Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735–758.CrossRefGoogle Scholar
  4. 4.
    Garzella, C.; Comini, E.; Tempesti, E.; Frigeri, C.; Sberveglieri, G. TiO2 Thin Films by a Novel Sol-Gel Processing for Gas Sensor Applications. Sens. Actuators B Chem. 2000, 68, 189–196.CrossRefGoogle Scholar
  5. 5.
    Rao, K. N.; Murthy, M. A.; Mohan, S. Optical-Properties of Electron-Beam-Evaporated TiO2 Films. Thin Solid Films 1989, 176, 181–186.CrossRefGoogle Scholar
  6. 6.
    Venz, P. A.; Kloprogge, J. T.; Frost, R. L. Chemically Modified Titania Hydrolysates: Physical Properties. Langmuir 2000, 16, 4962–4968.CrossRefGoogle Scholar
  7. 7.
    Oregan, B.; Gratzel, M. A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737–740.CrossRefGoogle Scholar
  8. 8.
    Hagfeldt, A.; Gratzel, M. Light-Induced Redox Reactions in Nanocrystalline Systems. Chem. Rev. 1995, 95, 49–68.CrossRefGoogle Scholar
  9. 9.
    Henrich, V. E.; Cox, P. A. The Surface Science of Metal Oxides; Cambridge Univ. Press: New York, 1994.Google Scholar
  10. 10.
    Pacchioni, G.; Ferrari, A. M.; Bagus, P. S. Cluster and Band Structure Ab Initio Calculations on the Adsorption of CO on Acid Sites of the TiO2 (110) Surface. Surf. Sci. 1996, 50, 159–175.CrossRefGoogle Scholar
  11. 11.
    Sousa, C.; Illas, F. Ionic-Covalent Transition in Titanium-Oxides. Phys. Rev. B 1994, 50, 13974–13980.CrossRefGoogle Scholar
  12. 12.
    Hagfeldt, A.; Siegbahn, H.; Lindquist, S. E.; Lunell, S. Semiempirical Calculations of TiO2 (Rutile) Clusters. Int. J. Quantum Chem. 1992, 44, 477–495.CrossRefGoogle Scholar
  13. 13.
    Doeuff, S.; Dromzee, Y.; Taulelle, F.; Sanchez, C. Synthesis and Solid-State and Liquid-State Characterization of a Hexameric Cluster of Titanium (IV)—Ti62-O)23-O)22-OC4H9)2(OC4H9)6(OCOCH3)8. Inorg. Chem. 1989, 28, 4439–4445.CrossRefGoogle Scholar
  14. 14.
    Schubert, U.; Arpac, E.; Glaubitt, W.; Helmerich, A.; Chau, C. Primary Hydrolysis Products of Methacrylate-Modified Titanium and Zirconium Alkoxides. Chem. Mater. 1992, 4, 291–295.CrossRefGoogle Scholar
  15. 15.
    Wilcoxon, J. P.; Martin, J. E.; Provencio, P. Size Distributions of Gold Nanoclusters Studied by Liquid Chromatography. Langmuir 2000, 16, 9912–9920.CrossRefGoogle Scholar
  16. 16.
    Cullity, B. D. Elements of X-ray Diffraction; Addison—Wesley: Reading, MA, 1978.Google Scholar
  17. 17.
    Kubler, B.; Millon, E.; Gaumet, J. J.; Muller, J. F. Formation of High mass C-n Clusters (n>100) by Laser Ablation/Desorption Coupled with Mass Spectrometry. Fullerene Sci. Technol. 1996, 4, 1247–1261.CrossRefGoogle Scholar
  18. 18.
    Hummelen, J. C.; Knight, B.; Pavlovich, J.; Gonzalez, R.; Wudl, F. Isolation of the Heterofullerene C59N as Its Dimer (C59N)2. Science 1995, 269, 1554–1556.CrossRefGoogle Scholar
  19. 19.
    Lafargue, P. E.; Gaumet, J. J.; Muller, J. F.; Labrosse, A. Laser Ablation of Silica: Study of Induced Clusters by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Mass Spectrom. 1996, 31, 623–632.CrossRefGoogle Scholar
  20. 20.
    Kasuya, A.; Sivamohan, R.; Barnakov, Y. A.; Dmitruk, I. M.; Nirasawa, T.; Romanyuk, V. R.; Kumar, V.; Mamykin, S. V.; Tohji, K.; Jeyadevan, B.; Shinoda, K.; Kudo, T.; Terasaki, O.; Liu, Z.; Belosludov, R. V.; Sundararajan, V.; Kawazoe, Y. Ultra-stable Nanoparticles of CdSe Revealed from Mass Spectrometry. Nat. Mater. 2004, 3, 99–102.CrossRefGoogle Scholar
  21. 21.
    Khitrov, G. A.; Strouse, G. F. ZnS Nanomaterial Characterization by MALDI-TOF Mass Spectrometry. J. Am. Chem. Soc. 2003, 125, 10465–10469.CrossRefGoogle Scholar
  22. 22.
    Gaumet, J. J.; Strouse, G. F. Nanospray Mass Spectrometry Technique for Analyzing Nanomaterials from Molecular Precursors up to 1.5 nm in Diameter Clusters. Mater. Sci. Eng. C 2002, 19, 299–304.CrossRefGoogle Scholar
  23. 23.
    Gaumet, J. J.; Khitrov, G. A.; Strouse, G. F. Mass Spectrometry Analysis of the 1.5 nm Sphalerite-CdS Core of [Cd32S14(SC6H5)36DMF4]. Nano. Lett. 2002, 2, 375–379.CrossRefGoogle Scholar
  24. 24.
    Gaumet, J. J.; Strouse, G. F. Electrospray Mass Spectrometry of Semiconductor Nanoclusters: Comparative Analysis of Positive and Negative Ion Mode. J. Am. Soc. Mass Spectrom. 2000, 11, 338–344.CrossRefGoogle Scholar
  25. 25.
    Schaaff, T. G.; Shafigullin, M. N.; Khoury, J. T.; Vezmar, I.; Whetten, R. L. Properties of a Ubiquitous 29 kDa Au:SR Cluster Compound. J. Phys. Chem. B 2001, 105, 8785–8796.CrossRefGoogle Scholar
  26. 26.
    Whetten, R. L.; Khoury, J. T.; Alvarez, M. M.; Murthy, S.; Vezmar, I.; Wang, Z. L.; Stephens, P. W.; Cleveland, C. L.; Luedtke, W. D.; Landman, U. Nanocrystal Gold Molecules. Adv. Mater. 1996, 8, 428–433.CrossRefGoogle Scholar
  27. 27.
    Arnold, R. J.; Reilly, J. P. High-resolution Time-of-Flight Mass Spectra of Alkanethiolate-coated Gold Nanocrystals. J. Am. Chem. Soc. 1998, 120, 1528–1532.CrossRefGoogle Scholar
  28. 28.
    Vezmar, I.; Alvarez, M. M.; Khoury, J. T.; Salisbury, B. E.; Shafigullin, M. N.; Whetten, R. L. Z. Cluster Beams from Passivated Nanocrystals. Z. Phys. D: At. Mol. Clusters 1997, 40, 147–151.CrossRefGoogle Scholar
  29. 29.
    d’Avray, A. T. D.; Carpenter, E. E.; O’Connor, C. J.; Cole, R. B. Characterization of Ferrite Nanoparticles by Laser Desorption/Ionization Mass Spectrometry. Eur. Mass Spectrom. 1998, 4, 441–449.CrossRefGoogle Scholar
  30. 30.
    Khitrov, G. A.; Strouse, G. F.; Gaumet, J. J. Characterization of Ti6O4(O2C4H5)8(OCH2CH3)8 by Electrospray Time of Flight Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 260–267.CrossRefGoogle Scholar
  31. 31.
    Mori, H.; Lanzendorfer, M. G.; Muller, A. H. E.; Klee, J. E. Silsesquioxane-based Nanoparticles Formed via Hydrolytic Condensation of Organotriethoxysilane Containing Hydroxy Groups. Macromolecules 2004, 37, 5228–5238.CrossRefGoogle Scholar
  32. 32.
    Alves, S.; Kalberer, M.; Zenobi, R. Direct Detection of Particles Formed by Laser Ablation of Matrices during Matrix-assisted Laser Desorption/Ionization. Rapid Commun. Mass Spectrom. 2003, 17, 2034–2038.CrossRefGoogle Scholar
  33. 33.
    Bauer, F.; Sauerland, V.; Ernst, H.; Glasel, H. A.; Naumov, S.; Mehnert, R. Preparation of Scratch- and Abrasion-resistant Polymeric Nanocomposites by Monomer Grafting onto Nanoparticles, 4: Application of MALDI-TOF Mass Spectrometry to the Characterization of Surface Modified Nanoparticles. Macromol. Chem. Phys. 2003, 204, 375–383.CrossRefGoogle Scholar
  34. 34.
    Colton, R.; Dagostino, A.; Traeger, J. C. Electrospray Mass Spectrometry Applied Inorganic and Organometallic Chemistry. Mass Spectrom. Rev. 1995, 14, 79–106.CrossRefGoogle Scholar
  35. 35.
    Gatlin, C. L.; Turecek, F. Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications; Cole, R. B., Ed.; Wiley-Interscience: New York, 1997.Google Scholar
  36. 36.
    Traeger, J. C. Electrospray Mass Spectrometry of Organometallic Compounds. Int. J. Mass. Spectrom. 2000, 200, 387–401.CrossRefGoogle Scholar
  37. 37.
    Lover, T.; Henderson, W.; Bowmaker, G. A.; Seakins, J. M.; Cooney, R. P. Electrospray Mass Spectrometry of Thiophenolate-capped Clusters of CdS, CdSe, and ZnS and of Cadmium and Zinc Thiophenolate Complexes: Observation of Fragmentation and Metal, Chalcogenide, and Ligand Exchange Processes. Inorg. Chem. 1997, 36, 3711–3723.CrossRefGoogle Scholar
  38. 38.
    Lover, T.; Henderson, W.; Bowmaker, G. A.; Seakins, J. M.; Cooney, R. P. Functionalization and Capping of a CdS Nanocluster: A Study of Ligand Exchange by Electrospray Mass Spectrometry. Chem. Mater. 1997, 9, 1878–1886.CrossRefGoogle Scholar
  39. 39.
    Spengler, B.; Kirsch, D.; Kaufmann, R. Metastable Decay of Peptides and Proteins in Matrix-assisted Laser-Desorption Mass-Spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 198–202.CrossRefGoogle Scholar
  40. 40.
    Spengler, B.; Kirsch, D.; Kaufmann, R.; Jaeger, E. Peptide Sequencing by Matrix-Assisted Laser-Desorption Mass-Spectrometry. Rapid Commun. Mass Spectrom. 1992, 6, 105–108.CrossRefGoogle Scholar
  41. 41.
    Mitsuhashi, T.; Kleppa, O. J. Transformation Enthalpies of the TiO2 Polymorphs. J. Am. Ceram. Soc. 1979, 62, 356–357.CrossRefGoogle Scholar
  42. 42.
    Cheng, H. M.; Ma, J. M.; Zhao, Z. G.; Qi, L. M. Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles. Chem. Mater. 1995, 7, 663–671.CrossRefGoogle Scholar
  43. 43.
    International Centre for Diffraction Data (ICDD, formerly JCPDS), File no. 21-1272; ICDD: Newtown Square, PA.Google Scholar
  44. 44.
    Chen, L. X.; Rajh, T.; Jager, W.; Nedeljkovic, J.; Thurnauer, M. C. X-ray Absorption Reveals Surface Structure of Titanium Dioxide Nanoparticles. J. Synchrotron. Radiat. 1999, 6, 445–447.CrossRefGoogle Scholar
  45. 45.
    Chen, L. X.; Rajh, T.; Wang, Z. Y.; Thurnauer, M. C. XAFS Studies of Surface Structures of TiO2 Nanoparticles and Photocatalytic Reduction of Metal Ions. J. Phys. Chem. B 1997, 101, 10688–10697.CrossRefGoogle Scholar
  46. 46.
    Rajh, T.; Poluektov, O.; Dubinski, A. A.; Wiederrecht, G.; Thurnauer, M. C.; Trifunac, A. D. Spin Polarization Mechanisms in Early Stages of Photoinduced Charge Separation in Surface-modified TiO2 Nanoparticles. Chem. Phys. Lett. 2001, 344, 31–39.CrossRefGoogle Scholar
  47. 47.
    Naicker, P. K.; Cummings, P. T.; Zhang, H. Z.; Banfield, J. F. Characterization of Titanium Dioxide Nanoparticles Using Molecular Dynamics Simulations. J. Phys. Chem. B 2005, 109, 15243–15249.CrossRefGoogle Scholar
  48. 48.
    Chen, C. T.; Chen, Y. C. Molecularly Imprinted TiO2-Matrix-assisted Laser Desorption/Ionization Mass Spectrometry for Selectively Detecting alpha-Cyclodextrin. Anal. Chem. 2004, 76, 1453–1457.CrossRefGoogle Scholar
  49. 49.
    Chen, C. T.; Chen, Y. C. Desorption/Ionization Mass Spectrometry on Nanocrystalline Titania Sol-Gel-deposited Films. Rapid Commun. Mass Spectrom. 2004, 18, 1956–1964.CrossRefGoogle Scholar
  50. 50.
    Kinumi, T.; Saisu, T.; Takayama, M.; Niwa, H. Matrix-assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Using an inorganic Particle Matrix for Small Molecule Analysis. J. Mass Spectrom. 2000, 35, 417–422.CrossRefGoogle Scholar
  51. 51.
    Dopke, N. C.; Treichel, P. M.; Vestling, M. M. Matrix-assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) of Rhenium(III) Halides: A Characterization Tool for Metal Atom Clusters. Inorg. Chem. 1998, 37, 1272–1277.CrossRefGoogle Scholar
  52. 52.
    Seraglia, R.; Armelao, L.; Cristoni, S.; Gross, S.; Tondello, E.; Traldi, P. Matrix-assisted Laser Desorption/Ionisation Mass Spectrometry in the Study of Polycondensation of Ti(OBu-n)4 in the Presence of Si(OEt)4. Rapid Commun. Mass Spectrom. 2003, 17, 2649–2654.CrossRefGoogle Scholar
  53. 53.
    Cristoni, S.; Armelao, L.; Gross, S.; Tondello, E.; Traldi, P. Electrospray Ionization in the Study of the Polycondensation of Ti(O-i-C3H7)4 and Ti(O-n-C4H9)4. Rapid Commun. Mass Spectrom. 2000, 14, 662–668.CrossRefGoogle Scholar
  54. 54.
    Cristoni, S.; Armelao, L.; Gross, S.; Tondello, E.; Traldi, P. Electrospray Ionization in the Study of Sol-Gel Processes: The Polycondensation of Ti(O-n-Bu)4 in the Presence of Si(OEt)4. Rapid Commun. Mass Spectrom. 2001, 15, 386–392.CrossRefGoogle Scholar
  55. 55.
    Schaaff, T. G. Laser Desorption and Matrix-assisted Laser Desorption/Ionization Mass Spectrometry of 29-kDa Au:SR Cluster Compounds. Anal. Chem. 2004, 76, 6187–6196.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  • Bing Guan
    • 1
  • Weigang Lu
    • 2
  • Jiye Fang
    • 2
  • Richard B. Cole
    • 1
  1. 1.Department of ChemistryUniversity of New OrleansNew Orleans
  2. 2.Department of Chemistry and Advanced Materials Research InstituteUniversity of New OrleansNew OrleansUSA

Personalised recommendations