Shrinking droplets in electrospray ionization and their influence on chemical equilibria

  • Arno Wortmann
  • Anna Kistler-Momotova
  • Renato Zenobi
  • Martin C. Heine
  • Oliver Wilhelm
  • Sotiris E. Pratsinis
Articles

Abstract

We investigated how chemical equilibria are affected by the electrospray process, using simultaneous in situ measurements by laser-induced fluorescence (LIF) and phase Doppler anemometry (PDA). The motivation for this study was the increasing number of publications in which electrospray ionization mass spectrometry is used for binding constant determination. The PDA was used to monitor droplet size and velocity, whereas LIF was used to monitor fluorescent analytes within the electrospray droplets. Using acetonitrile as solvent, we found an average initial droplet diameter of 10 µm in the electrospray. The PDA allowed us to follow the evolution of these droplets down to a size of 1 µm. Rhodamine B-sulfonylchloride was used as a fluorescent analyte within the electrospray. By spatially resolved LIF it was possible to probe the dimerization equilibrium of this dye. Measurements at different spray positions showed no influence of the decreasing droplet size on the monomer-dimer equilibrium. However, with the fluorescent dye pair DCM and oxazine 1 it was shown that a concentration increase does occur within electrosprayed droplets, using fluorescence resonance energy transfer as a probe for the average pair distance.

References

  1. 1.
    Ganem, B.; Li, Y. R.; Henion, J. D. Detection of Noncovalent Receptor-Ligand Complexes by Mass Spectrometry. J. Am. Chem. Soc. 1991, 113, 6294–6296.CrossRefGoogle Scholar
  2. 2.
    Ayed, A.; Krutchinsky, A. N.; Ens, W.; Standing, K. G.; Duckworth, H. W. Quantitative Evaluation of Protein-Protein and Ligand-Protein Equilibria of a Large Allosteric Enzyme by Electrospray Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1998, 12, 339–344.CrossRefGoogle Scholar
  3. 3.
    Kraunsoe, J. A.; Aplin, R. T.; Green, B.; Lowe, G. An investigation of the binding of protein proteinase inhibitors to trypsin by electrospray Ionization Mass Spectrometry. FEBS Lett. 1996, 396, 108–112.CrossRefGoogle Scholar
  4. 4.
    Daniel, J. M.; McCombie, G.; Wendt, S.; Zenobi, R. Mass Spectrometric Determination of Association Constants of Adenylate Kinase with Two Noncovalent Inhibitors. J. Am. Soc. Mass Spectrom. 2003, 14, 442–448.CrossRefGoogle Scholar
  5. 5.
    Cole, R. B., Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications; Wiley: New York, 1997.Google Scholar
  6. 6.
    Enke, C. G. A Predictive Model for Matrix and Analyte Effects in Electrospray Ionization of Singly-Charged Ionic Analytes. Anal. Chem. 1997, 69, 4885–4893.CrossRefGoogle Scholar
  7. 7.
    Sjoberg, P. J.; Bokman, C. F.; Bylund, D.; Markides, K. E. A Method for Determination of Ion Distribution within Electrosprayed Droplets. Anal. Chem. 2001, 73, 23–28.CrossRefGoogle Scholar
  8. 8.
    Sherman, C. L.; Brodbelt, J. S. An Equilibrium Partitioning Model for Predicting Response to Host-Guest Complexation in Electrospray Ionization Mass Spectrometry. Anal. Chem. 2003, 75, 1828–1836.CrossRefGoogle Scholar
  9. 9.
    Tang, K.; Gomez, A. On the Structure of an Electrostatic Spray of Monodisperse Droplets. Phys. Fluids. 1994, 6, 2317–2332.CrossRefGoogle Scholar
  10. 10.
    Wilhelm, O.; Madler, L.; Pratsinis, S. E. Electrospray Evaporation and Deposition. J. Aerosol Sci. 2003, 34, 815–836.CrossRefGoogle Scholar
  11. 11.
    Tang, K.; Smith, R. D. Physical/Chemical Separations in the Break-up of Highly Charged Droplets from Electrosprays. J. Am. Soc. Mass Spectrom. 2001, 12, 343–347.CrossRefGoogle Scholar
  12. 12.
    Iribarne, J. V.; Thomson, B. A. On the Evaporation of Small Ions from Charged Droplets. J. Chem. Phys. 1976, 64, 2287–2294.CrossRefGoogle Scholar
  13. 13.
    Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B. Molecular Beams of Macroions. J. Chem. Phys. 1968, 49, 2240–2249.CrossRefGoogle Scholar
  14. 14.
    Kebarle, P.; Peschke, M. On the Mechanisms by Which the Charged Droplets Produced by Electrospray Lead to Gas Phase Ions. Anal. Chim. Acta. 2000, 406, 11–35.CrossRefGoogle Scholar
  15. 15.
    Kebarle, P. A Brief Overview of the Present Status of the Mechanisms Involved in Electrospray Mass Spectrometry. J. Mass Spectrom. 2000, 35, 804–817.CrossRefGoogle Scholar
  16. 16.
    Wang, H. J.; Agnes, G. R. Evaluation of Electrospray Mass Spectrometry as a Technique for Quantitative Analysis of Kinetically Labile Solution Species. Anal. Chem. 1999, 71, 3785–3792.CrossRefGoogle Scholar
  17. 17.
    Wang, H.; Agnes, G. R. Kinetically Labile Equilibrium Shifts Induced by the Electrospray Process. Anal. Chem. 1999, 71, 4166–4172.CrossRefGoogle Scholar
  18. 18.
    Zhou, S.; Cook, K. D. Probing Solvent Fractionation in Electrospray Droplets with Laser-induced Fluorescence of a Solvatochromic Dye. Anal. Chem. 2000, 72, 963–969.CrossRefGoogle Scholar
  19. 19.
    Zhou, S.; Prebyl, B. S.; Cook, K. D. Profiling pH Changes in the Electrospray Plume. Anal. Chem. 2002, 74, 4885–4888.CrossRefGoogle Scholar
  20. 20.
    Rodriguez-Cruz, S. E.; Khoury, J. T.; Parks, J. H. Protein Fluorescence Measurements within Electrospray Droplets. J. Am. Soc. Mass Spectrom. 2001, 12, 716–725.CrossRefGoogle Scholar
  21. 21.
    Ham, J. E.; Durham, B.; Scott, J. R. Design of Instrumentation for Probing Changes in Electrospray Droplets via the Stern-Volmer Relationship. Rev. Sci. Instrum. 2005, 76, 014101.CrossRefGoogle Scholar
  22. 22.
    Olumee, Z.; Callahan, J. H.; Vertes, A. Droplet Dynamics Changes in Electrostatic Sprays of Methanol-Water Mixtures. J. Phys. Chem. A. 1998, 102, 9154–9160.CrossRefGoogle Scholar
  23. 23.
    Smith, R. D.; Flagan, R. C.; Beauchamp, J. L. Droplet Evaporation and Discharge Dynamics in Electrospray Ionization. J. Phys. Chem. A. 2002, 106, 9957–9967.CrossRefGoogle Scholar
  24. 24.
    Stryer, L.; Haugland, R. P. Energy Transfer: A Spectroscopic Ruler. Proc. Natl. Acad. Sci. U.S.A. 1967, 58, 719–726.CrossRefGoogle Scholar
  25. 25.
    Heine, M. C.; Pratsinis, S. E. Droplet and Particle Dynamics during Flame Spray Synthesis of Nanoparticles. Ind. Eng. Chem. Res. 2005, 44, 6222–6232.CrossRefGoogle Scholar
  26. 26.
    Cloupeau, M.; Prunetfoch, B. Electrohydrodynamic Spraying Functioning Modes—A Critical Review. J. Aerosol Sci. 1994, 25, 1021–1036.CrossRefGoogle Scholar
  27. 27.
    Lopez-Herrera, J. M.; Barrero, A.; Boucard, A.; Loscertales, I. G.; Marquez, M. An Experimental: Study of the Electrospraying of Water in Air at Atmospheric Pressure. J. Am. Soc. Mass Spectrom. 2004, 15, 253–259.CrossRefGoogle Scholar
  28. 28.
    Holmes, W. C. The Influence of Variation in Concentration on the Absorption Spectra of Dye Solutions. Ind. Eng. Chem. 1924, 16, 35.CrossRefGoogle Scholar
  29. 29.
    Levshin, L. V.; Gorskov, V. K. Opt. Spectrosc. 1961, 10, 401–405.Google Scholar
  30. 30.
    Selwyn, J. E.; Steinfeld, J. I. Aggregation Equilibria of Xanthene Dyes. J. Phys. Chem. 1972, 76, 762–774.CrossRefGoogle Scholar
  31. 31.
    Levshin, L. V.; Lonskaya, I. S. Dependence of the Association of Rhodamines on the Structure of Their Molecules and the Nature of the Solvent. Opt. Spectrosc. 1961, 11, 148–150.Google Scholar
  32. 32.
    Levshin, L. V.; Slavnova, T. D.; Yuzhakov, V. I. Spectroscopic Manifestation of the Association of Rhodamine 6G in Alcoholic Solutions at Different Temparatures. Zh. Prikl. Spektrosk. 1976, 24, 985–990.Google Scholar
  33. 33.
    Lu, Y.; Penzkofer, A. Absorption Behaviour of Methanolic Rhodamine 6G Solutions at High Concentration. Chem. Phys. 1986, 107, 175–184.CrossRefGoogle Scholar
  34. 34.
    Burghardt, T. P.; Lyke, J. E.; Ajtai, K. Fluorescence Emission and Anisotropy from Rhodamine Dimers. Biophys. Chem. 1996, 59, 119–131.CrossRefGoogle Scholar
  35. 35.
    Bakhoum, S. F. W.; Agnes, G. R. Study of Chemistry in Droplets with Net Charge before and after Coulomb Explosion: Ion-Induced Nucleation in Solution and Implications for Ion Production in an Electrospray. Anal. Chem. 2005, 77, 3189–3197.CrossRefGoogle Scholar
  36. 36.
    Abramzon, B.; Sirignano, W. A. Droplet Vaporization Model for Spray Combustion Calculations. Int. J. Heat. Mass Transfer. 1989, 32, 1605–1618.CrossRefGoogle Scholar
  37. 37.
    Drexhage K. H. Dye Lasers; F. P. Schäfer, Ed.; Springer-Verlag: New York, 1977.Google Scholar
  38. 38.
    Kebarle, P.; Ho Y. On the Mechanism of Electrospray Ionization; R. Cole, Ed.; Wiley-Interscience: New York, Chapter 1, 1997 pp 3–63.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  • Arno Wortmann
    • 1
  • Anna Kistler-Momotova
    • 1
  • Renato Zenobi
    • 1
  • Martin C. Heine
    • 2
  • Oliver Wilhelm
    • 2
  • Sotiris E. Pratsinis
    • 2
  1. 1.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland
  2. 2.Department of Mechanical and Process EngineeringETH ZurichZurichSwitzerland

Personalised recommendations