Electron capture in spin-trap capped peptides. An experimental example of ergodic dissociation in peptide cation-radicals

  • Jace W. Jones
  • Tomikazu Sasaki
  • David R. Goodlett
  • František Turecček


Electron capture dissociation was studied with tetradecapeptides and pentadecapeptides that were capped at N-termini with a 2-(4′-carboxypyrid-2′-yl)-4-carboxamide group (pepy), e. g., pepy-AEQLLQEEQLLQEL-NH2, pepy-AQEFGEQGQKALKQL-NH2, and pepy-AQEGSEQAQKFFKQL-NH2. Doubly and triply protonated peptide cations underwent efficient electron capture in the ion-cyclotron resonance cell to yield charge-reduced species. However, the electron capture was not accompanied by backbone dissociations. When the peptide ions were preheated by absorption of infrared photons close to the dissociation threshold, subsequent electron capture triggered ion dissociations near the remote C-terminus forming mainly (b 11–14+1) fragment ions that were analogous to those produced by infrared multiphoton dissociation alone. Ab initio calculations indicated that the N-1 and N-1′ positions in the pepy moiety had topical gas-phase basicities (GB=923 kJ mol−1) that were greater than those of backbone amide groups. Hence, pepy was a likely protonation site in the doubly and triply charged ions. Electron capture in the protonated pepy moiety produced the ground electronic state of the charge-reduced cation-radical with a topical recombination energy, RE=5.43–5.46 eV, which was greater than that of protonated peptide residues. The hydrogen atom in the charge-reduced pepy moiety was bound by >160 kJ mol−1, which exceeded the hydrogen atom affinity of the backbone amide groups (21–41 kJ mol−1). Thus, the pepy moiety functioned as a stable electron and hydrogen atom trap that did not trigger radical-type dissociations in the peptide backbone that are typical of ECD. Instead, the internal energy gained by electron capture was redistributed over the peptide moiety, and when combined with additional IR excitation, induced proton-driven ion dissociations which occurred at sites that were remote from the site of electron capture. This example of a spin-remote fragmentation provided the first clear-cut experimental example of an ergodic dissociation upon ECD.


  1. 1.(a)
    Burlet, O.; Yang, C. Y.; Gaskell, S. J. Influence of Cysteine to Cysteic Acid Oxidation on the Collision-Activated Decomposition of Protonated Peptides: Evidence for Intraionic Interactions. J. Am. Soc. Mass Spectrom. 1992, 3, 337–344.CrossRefGoogle Scholar
  2. 1.(b)
    Dongre, A. R.; Jones, J. L.; Somogyi, A.; Wysocki, V. H. Influence of Peptide Composition, Gas-Phase Basicity, and Chemical Modification on Fragmentation Efficiency: Evidence for the Mobile Proton Model. J. Am. Chem. Soc. 1996, 118, 8365–8374.CrossRefGoogle Scholar
  3. 2.
    Paizs, B.; Lendvay, G.; Vekey, K.; Suhai, S. Formation of b2+ Ions from Protonated Peptides: An ab Initio Study. Rapid Commun. Mass Spectrom. 1999, 13, 525–533.CrossRefGoogle Scholar
  4. 3.
    Csonka, I. P.; Paizs, B.; Lendvay, G.; Suhai, S. Proton Mobility in Protonated Peptides: A Joint Molecular Orbital and RRKM Study. Rapid Commun. Mass Spectrom. 2000, 14, 417–431.CrossRefGoogle Scholar
  5. 4.
    El Aribi, H.; Orlova, G.; Rodriquez, C. F.; Almeida, D. R. P.; Hopkinson, A. C.; Siu, K. W. M. Fragmentation Mechanisms of Product Ions from Protonated Tripeptides. J. Phys. Chem. B. 2004, 108, 18743–18749.CrossRefGoogle Scholar
  6. 5.(a)
    Paizs, B.; Suhai, S. Fragmentation Pathways of Protonated Peptides. Mass Spectrom. Rev. 2005, 24, 508–548.CrossRefGoogle Scholar
  7. 5.(b)
    Wysocki, V. H.; Cheng, G.; Zhang, Q.; Herrmann, K. A.; Beardsley, R. L.; Hildebrand, A. E. Peptide Gragmentation Overview. In Principles of Mass Spectrometry Applied to Biomolecules; Laskin, J.; Lifshitz, C., Eds.; Wiley-Interscience: Hoboken, New Jersey, 2006; Part I, Chap VII, pp 279–300.Google Scholar
  8. 6.
    Lifshitz, C. Intramolecular Vibrational Energy Redistribution and Ergodicity of Biomolecular Dissociation. In Principles of Mass Spectrometry Applied to Biomolecules; Laskin, J.; Lifshitz, C., Eds.; Wiley-Interscience: Hoboken, New Jersey, 2006; Part I, Chap VII, pp 239–275.CrossRefGoogle Scholar
  9. 7.
    Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Blackwell Scientific Publications: Oxford, 1990; pp 52–132.Google Scholar
  10. 8.
    Glasstone, S.; Laidler, K. J.; Eyring, H. The Theory of Rate Processes; the Kinetics of Chemical Reactions, Viscosity, Diffusion, and Electrochemical Phenomena. McGraw-Hill: New York; 1941.Google Scholar
  11. 9.
    Hu, Y.; Hadas, B.; Davidovitz, M.; Balta, B.; Lifshitz, C. Does IVR Take Place Prior to Peptide Ion Dissociation? J. Phys. Chem. A. 2003, 107, 6507–6514.CrossRefGoogle Scholar
  12. 10.(a)
    McLuckey, S. A.; Goeringer, D. E. Slow Heating Methods in Tandem Mass Spectrometry. J. Mass Spectrom. 1997, 32, 461–474.CrossRefGoogle Scholar
  13. 10.(b)
    Goeringer, D. E.; McLuckey, S. A. Relaxation of Internally Excited High-Mass Ions Simulated Under Typical Quadrupole Ion Trap Storage Conditions. Int. J. Mass Spectrom. 1998, 177, 163–174.CrossRefGoogle Scholar
  14. 11.
    Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. Electron Capture Dissociation of Multiply Charged Protein Cations: A Nonergodic Process. J. Am. Chem. Soc. 1998, 120, 3265–3266.CrossRefGoogle Scholar
  15. 12.
    Coon, J. J.; Ueberheide, B.; Syka, J. E. P.; Dryhurst, D. D.; Ausio, J.; Shabanowitz, J.; Hunt, D. F. Protein Identification Using Sequential Ion/Ion Reactions and Tandem Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 9463–9468.CrossRefGoogle Scholar
  16. 13.
    Zubarev, R. A.; Horn, D. M.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, M. A.; Carpenter, B. K.; McLafferty, F. W. Electron Capture Dissociation for Structural Characterization of Multiply Charged Protein Cations. Anal. Chem. 2000, 72, 563–573.CrossRefGoogle Scholar
  17. 14.(a)
    Cooper, H. J.; Hakansson, K.; Marshall, A. G. The Role of Electron Capture Dissociation in Biomolecular Analysis. Mass Spectrom. Rev. 2005, 24, 201–222.CrossRefGoogle Scholar
  18. 14.(b)
    Cooper, H. J. Investigation of the Presence of b-Ions in Electron Capture Dissociation Mass Spectra. J. Am. Soc. Mass Spectrom. 2005, 16, 1932–1940.CrossRefGoogle Scholar
  19. 14.(c)
    Fung, Y. M. E.; Chan, T.-W. D. Experimental and Theoretical Investigations of the Loss of Amino Acid Side Chains in Electron Capture Dissociation of Model Peptides. J. Am. Soc. Mass Spectrom. 2005, 16, 1523–1535.CrossRefGoogle Scholar
  20. 15.
    Turecček, F.; Syrstad, E. A. Mechanism and Energetics of Intramolecular Hydrogen Transfer in Amide and Peptide Radicals and Cation-Radicals. J. Am. Chem. Soc. 2003, 125, 3353–3369.CrossRefGoogle Scholar
  21. 16.
    Turecček, F. N-Cα Bond Dissociation Energies and Kinetics in Amide and Peptide Radicals: Is the Dissociation a Nonergodic Process?. J. Am. Chem. Soc. 2003, 125, 5954–5963.CrossRefGoogle Scholar
  22. 17.
    Chen, X.; Turecček, F. The Arginine Anomaly: Arginine Radicals are Poor Hydrogen Atom Donors in Electron Transfer Induced Dissociations. J. Am. Chem. Soc. 2006, 128, 12520–12530.CrossRefGoogle Scholar
  23. 18.
    Nguyen, V. Q.; Turecček, F. Protonation Sites in Gaseous Pyrrole and Imidazole: A Neutralization-Reionization and ab Initio Study. J. Mass Spectrom. 1996, 31, 1173–1184.CrossRefGoogle Scholar
  24. 19.
    Turecček, F.; Syrstad, E. A.; Seymour, J. L.; Chen, X.; Yao, C. Peptide Cation-Radicals: A Computational Study of the Competition Between Peptide N-Cα bond cleavage and loss of the side chain in the [GlyPhe-NH2+2H] Cation-Radical. J. Mass Spectrom. 2003, 38, 1093–1104.CrossRefGoogle Scholar
  25. 20.
    Bakken, V.; Helgaker, T.; Uggerud, E. Models of Fragmentations Induced by Electron Attachment to Protonated Peptides. Eur. J. Mass Spectrom. 2004, 10, 625–638.CrossRefGoogle Scholar
  26. 21.
    Konishi, H.; Yokotake, Y.; Ishibashi, T. Theoretical Study on the Electron Capture Dissociation Correlated with Proton Transfer Processes. J. Mass Spectrom. Soc. Jpn. 2002, 50, 222–225.CrossRefGoogle Scholar
  27. 22.
    Syrstad, E. A.; Turecček, F. Toward a General Mechanism of Electron Capture Dissociation. J. Am. Soc. Mass Spectrom. 2005, 16, 208–224.CrossRefGoogle Scholar
  28. 23.(a)
    Sobczyk, M.; Anusiewicz, I.; Berdys-Kochanska, J.; Sawicka, A.; Skurski, P.; Simons, J. Coulomb-Assisted Dissociative Electron Attachment: Application to a Model Peptide. J. Phys. Chem. A. 2005, 109, 250–258.CrossRefGoogle Scholar
  29. 23.(b)
    Anusiewicz, I.; Berdys-Kochanska, J.; Simons, J. Electron Attachment Step in Electron Capture Dissociation (ECD) and Electron Transfer Dissociation (ETD). J. Phys. Chem. A. 2005, 109, 5801–5813.CrossRefGoogle Scholar
  30. 23.(c)
    Anusiewicz, I.; Berdys-Kochanska, J. A.; Skurski, P.; Simons, J. Simulating Electron Transfer Attachment to a Positively Charged Model Peptide. J. Phys. Chem. A. 2006, 110, 1261–1266.CrossRefGoogle Scholar
  31. 23.(d)
    Sobczyk, M.; Simons, J. The Role of Excited Rydberg States in Electron Transfer Dissociation. J. Phys. Chem. B. 2006, 110, 7519–7527.CrossRefGoogle Scholar
  32. 24.
    Breuker, K.; Oh, H.-B.; Lin, C.; Carpenter, B. K.; McLafferty, F. W. Nonergodic and Conformational Control of the Electron Capture Dissociation of Protein Cations. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 14011–14016.CrossRefGoogle Scholar
  33. 25.(a)
    Lieberman, M.; Sasaki, T. Iron(II) Organizes a Synthetic Peptide into Three-Helix Bundles. J. Am. Chem. Soc. 1991, 113, 1470–1471.CrossRefGoogle Scholar
  34. 25.(b)
    Lieberman, M.; Tabet, M.; Sasaki, T. Dynamic Structure and Potential Energy Surface of a Three-Helix Bundle Protein. J. Am. Chem. Soc. 1994, 116, 5035–5044.CrossRefGoogle Scholar
  35. 25.(c)
    Sasaki, T.; Lieberman, M. Between the Secondary Structure and the Tertiary Structure Falls the Globule: A Problem in de Novo Protein Design. Tetrahedron. 1993, 49, 3677–3689.CrossRefGoogle Scholar
  36. 26.
    Caravatti, P.; Allemann, M. The Infinity Cell-A New Trapped-Ion Cell with Radiofrequency Covered Trapping Electrodes for Fourier-Transform Ion-Cyclotron Resonance Mass Spectrometry. Org. Mass Spectrom. 1991, 26, 514–518.CrossRefGoogle Scholar
  37. 27.
    Turecček, F.; Gu, M.; Shaffer, S. A. A Novel Tandem Quadrupole Acceleration-Deceleration Mass Spectrometer for Neutralization-Reionization Studies. J. Am. Soc. Mass Spectrom. 1992, 3, 493–501.CrossRefGoogle Scholar
  38. 28.
    Seymour, J. L.; Syrstad, E. A.; Langley, C. C.; Turecček, F. Neutralization-Reionization of Ions Produced by Electrospray: Instrument Design and Initial Data. Int. J. Mass Spectrom. 2003, 228, 687–702.CrossRefGoogle Scholar
  39. 29.
    Turecček, F. Transient Intermediates of Chemical Reactions by Neutralization-Reionization Mass Spectrometry. Top Curr. Chem. 2003, 225, 77–129.CrossRefGoogle Scholar
  40. 30.
    Turecček, F. The Modern Mass Spectrometer: A Laboratory for Unstable Neutral Species. Org. Mass Spectrom. 1992, 27, 1087–1097.CrossRefGoogle Scholar
  41. 31.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austn, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B 05; Gaussian, Inc.: Pittsburgh, PA, 2003.Google Scholar
  42. 32.(a)
    Becke, A. D. A New Mixing of Hartree-Fock and Local-Density-Functional Theories. J. Chem. Phys. 1993, 98, 1372–1377.CrossRefGoogle Scholar
  43. 32.(b)
    Becke, A. D. Density Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652.CrossRefGoogle Scholar
  44. 32.(c)
    Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627.CrossRefGoogle Scholar
  45. 33.
    Turecček, F.; Cramer, C. J. Thermochemistry of Simple Enols and Enol Cation-Radicals Revisited: A G2(MP2) ab Initio Study. J. Am. Chem. Soc. 1995, 117, 12243–12253.CrossRefGoogle Scholar
  46. 34.
    Møller, C.; Plesset, M. S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618–622.CrossRefGoogle Scholar
  47. 35.
    Turecček, F. Proton Affinity of Dimethyl Sulfoxide and Relative Stabilities of C2H6OS Molecules and C2H7OS+ Ions: A Comparative G2(MP2) ab Initio and Density Functional Theory Study. J. Phys. Chem. A. 1998, 102, 4703–4713.CrossRefGoogle Scholar
  48. 36.(a)
    Turecček, F.; Wolken, J. K. Dissociation Energies and Kinetics of Aminopyrimidinium Radicals by ab Initio and Density Functional Theory. J. Phys. Chem. A 1999, 103, 1905–1912.CrossRefGoogle Scholar
  49. 36.(b)
    Turecček, F.; Wolken, J. K.; Sadílek, M. Distinction of Isomeric Pyridyl Cations and Radicals by Neutralization-Reionization Mass Spectrometry, ab Initio and Density Functional Theory Calculations. Eur. Mass Spectrom. 1998, 4, 321–332.CrossRefGoogle Scholar
  50. 36.(c)
    Wolken, J. K.; Turecček, F. Heterocyclic Radicals in the Gas Phase: An Experimental and Computational Study of 3-Hydroxypyridinium Radicals and Cations. J. Am. Chem. Soc. 1999, 121, 6010–6018.CrossRefGoogle Scholar
  51. 36.(d)
    Wolken, J. K.; Turecček, F. Modeling Nucleobase Radicals in the Gas Phase.: Experimental and Computational Study of 2-Hydroxypyridinium and 2(1H)-Pyridone Radicals. J. Phys. Chem. A. 1999, 103, 6268–6281.CrossRefGoogle Scholar
  52. 36.(e)
    Tureček, F.; Carpenter, F. H. Glycine Radicals in the Gas Phase. J. Chem. Soc., Perkin. Trans. 2 1999, 2315–2323.Google Scholar
  53. 36.(f)
    Polášek, M.; Turecček, F. Hydrogen Atom Adducts to Nitrobenzene: Formation of the Phenylnitronic Radical in the Gas Phase and Energetics of Wheland Intermediates. J. Am. Chem. Soc. 2000, 122, 9511–9524.CrossRefGoogle Scholar
  54. 37.(a)
    Rablen, P. R. Is the Acetate Anion Stabilized by Resonance or Electrostatics?: A Systematic Structural Comparison. J. Am. Chem. Soc. 2000, 122, 357–368.CrossRefGoogle Scholar
  55. 37.(b)
    Rablen, P. R.; Bentrup, K. H. Are the Enolates of Amides and Esters Stabilized by Electrostatics? J. Am. Chem. Soc. 2003, 125, 2142–2147.CrossRefGoogle Scholar
  56. 37.(c)
    Rablen, P. R. Is the Acetate Anion Stabilized by Resonance or Electrostatics?: A Systematic Structural Comparison. J. Am. Chem. Soc. 2000, 122, 357–368.CrossRefGoogle Scholar
  57. 37.(d)
    Rablen, P. R. Computational Analysis of the Solvent Effect on the Barrier to Rotation about the Conjugated C—N Bond in Ethyl N,N-Dimethylcarbamate. J. Org. Chem. 2000, 65, 7930–7937.CrossRefGoogle Scholar
  58. 37.(e)
    Hirama, M.; Tokosumi, T.; Ishida, T.; Aihara, J. Possible Molecular Hydrogen Formation Mediated by the Inner and Outer Carbon Atoms of Typical PAH Cations. Chem. Phys. 2004, 305, 307–316.CrossRefGoogle Scholar
  59. 37.(f)
    Fung, Y. M. E.; Liu, H.; Chan, T. W. D. Electron Capture Dissociation of Peptides Metalated with Alkaline-Earth Metal Ions. J. Am. Soc. Mass Spectrom. 2006, 17, 757–771.CrossRefGoogle Scholar
  60. 38.
    Harrison, A. G. The Gas-Phase Basicities and Proton Affinities of Amino Acids and Peptides. Mass Spectrom. Rev. 1997, 16, 201–217.CrossRefGoogle Scholar
  61. 39.(a)
    Hudgins, R. R.; Ratner, M. A.; Jarrold, M. F. Design of Helices that are Stable in Vacuo. J. Am. Chem. Soc. 1998, 120, 12974–12975.CrossRefGoogle Scholar
  62. 39.(b)
    Hartings, M. R.; Kinnear, B. S.; Jarrold, M. F. The Energy Landscape of Unsolvated Peptides: The Role of Context in the Stability of Alanine/Glycine Helices. J. Am. Chem. Soc. 2003, 125, 3941–3947.CrossRefGoogle Scholar
  63. 40.
    Turecček, F. Temperature Effects in Mass Spectrometry: Estimation of Thermal Energies of Organic Molecules. Org. Mass Spectrom. 1991, 26, 1074–1081.CrossRefGoogle Scholar
  64. 41.
    Nguyen, V. Q.; Turecček, F. Gas-Phase Protonation of Pyridine: A Variable-Time Neutralization-Reionization and ab Initio Study of Pyridinium Radicals. J. Mass Spectrom. 1997, 32, 55–63.CrossRefGoogle Scholar
  65. 42.
    Nguyen, V. Q.; Turecček, F. Protonation Sites in Pyrimidine and Pyrimidinamines in the Gas Phase. J. Am. Chem. Soc. 1997, 119, 2280–2290.CrossRefGoogle Scholar
  66. 43.
    Chen, X.; Syrstad, E. A.; Nguyen, M. T.; Gerbaux, P.; Turecček, F. Adenine Radicals in the Gas Phase: An Experimental and Computational Study of Hydrogen Atom Adducts to Adenine. J. Phys. Chem. A 2005, 109, 8121–8132.CrossRefGoogle Scholar
  67. 44.
    Yao, C.; Cuadrado-Peinado, M.; Polášek, M.; Turecček, F. Specific Generation of 1-Methylcytosine Radicals in the Gas-Phase. Angew. Chem. Int. Ed. Engl. 2005, 44, 6708–6711.CrossRefGoogle Scholar
  68. 45.
    Wolken, J. K.; Turecček, F. Direct Observation of a Hydrogen Atom Adduct to O-4 in Uracil: A Neutralization-Reionization Mass Spectrometric and ab initio Study. J. Phys. Chem. A 2001, 105, 8352–8360.CrossRefGoogle Scholar
  69. 46.
    Turecček, F. Modeling Nucleobase Radicals in the Mass Spectrometer. J. Mass Spectrom. 1998, 33, 779–795.CrossRefGoogle Scholar
  70. 47.
    Turecček, F.; Wolken, J. K. Dissociation Energies and Kinetics of Aminopyrimidinium Radicals by Ab Initio and Density Functional Theory. J. Phys. Chem. A. 1999, 103, 1905–1912.CrossRefGoogle Scholar
  71. 48.
    Belyayev, M. A.; Cournoyer, J. J.; Lin, C.; O’Connor, P. B. The Effect of Radical Trap Moieties on Electron Capture Dissociation Spectra of Substance P. J. Am. Soc. Mass Spectrom. 2006, 17, 1428–1436.CrossRefGoogle Scholar
  72. 49.
    NIST Standard Reference Database Number 69, June 2005 Release, http://webbook.nist.gov/chemistry.Google Scholar
  73. 50.
    Tureček, F.; Chen, X. Lysine, Histidine, and Arginine Residues as H-Atom Donors in ECD and ETD. Proceedings of the 54th ASMS Conference on Mass Spectrometry and Allied Topics; Seattle, WA, May, 2006; ThOE pm-03:10.Google Scholar
  74. 51.
    Seymour, J. L.; Turecček, F. Structure, Energetics, and Reactivity of Ternary Complexes of Amino Acids with Cu(II) and 2,2′-Bipyridine by Density Functional Theory: A Combination of Radical-Induced and Spin-Remote Fragmentations. J. Mass Spectrom. 2002, 37, 533–540.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  • Jace W. Jones
    • 1
  • Tomikazu Sasaki
    • 1
  • David R. Goodlett
    • 1
  • František Turecček
    • 1
  1. 1.Department of ChemistryUniversity of WashingtonSeattleUSA

Personalised recommendations