Negative ion mode electrospray ionization mass spectrometry study of ammonium-counter ion clusters



Electrospray ionization mass spectrometry (ESI-MS) was used to examine clusters of protonated amine salt solutions with chloride counter ions in the negative ion mode. These ions have the general formula [(RNH3)xClx+1]. Primary amines generate a wide cluster distribution with clusters up to 14 mer for methylamine hydrochloride clusters. Secondary and quaternary amines only generate the monomer ion under identical conditions. Collision induced dissociation (CID) of the cluster ions generates cluster ions of lower m/z with the next lower cluster being the most abundant. The product ions from MeNH3Cl2, Me2NH2Cl2 and (MeNH3)2Cl3 have low threshold appearance energies of 1. 24 to 2. 22 eV center-of-mass frame. Secondary amine monomer ions have lower threshold CID energies than primary amine monomer ions. The amine threshold CID energy decreases as the carbon chain length increases. As an electrospray solvent, isopropyl alcohol (IPA) promotes the formation of counter ions and clustering.


  1. 1.
    Yamashita, M.; Fenn, J. B. Electrospray Ion Source: Another Variation on the Free-Jet Theme. J. Phys. Chem. 1984, 88, 4451–4459.CrossRefGoogle Scholar
  2. 2.
    Zhou, S.; Hamburger, M. Formation of Sodium Cluster Ions in Electrospray Mass Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 797–800.CrossRefGoogle Scholar
  3. 3.
    Wang, G.; Cole, R. B. Charged Residue Versus Ion Evaporation for Formation of Alkali Metal Halide Cluster Ions in ESI. Anal. Chim. Acta. 2000, 406, 53–65.CrossRefGoogle Scholar
  4. 4.
    Gamero-Castaño, M.; Fernandez-de la Mora, J. Modulations in the Abundance of Salt Clusters in Electrosprays. Anal. Chem. 2000, 72, 1426–1429.CrossRefGoogle Scholar
  5. 5.
    Gamero-Castaño, M.; Fernandez-de la Mora, J. Mechanisms of Electrospray Ionization of Singly and Multiply Charged Salt Clusters. Anal. Chim. Acta. 2000, 406, 67–91.CrossRefGoogle Scholar
  6. 6.
    Charles, L.; Pépin, D.; Gonnet, F.; Tabet, J. Effects of Liquid Phase Composition on Salt Cluster Formation in Positive Ion Mode Electrospray Mass Spectrometry: Implications for Clustering Mechanism in Electrospray. J. Am. Soc. Mass Spectrom. 2001, 12, 1077–1084.CrossRefGoogle Scholar
  7. 7.
    Zhang, D.; Cooks, R. G. Doubly Charged Cluster Ions [(NaCl)m(Na)2]2+: Magic Numbers, Dissociation, and Structure. Int. J. Mass Spectrom. 2000, 195/196, 667–684.CrossRefGoogle Scholar
  8. 8.
    Hao, C.; March, R. E.; Croley, T. R.; Smith, J. C.; Rafferty, S. P. Electrospray Ionization Tandem Mass Spectrometric Study of Salt Cluster Ions: Part I. Investigations of Alkali Metal Chloride and Sodium Salt Cluster Ions. J. Mass Spectrom. 2001, 36, 79–96.CrossRefGoogle Scholar
  9. 9.
    Cai, Y.; Cole, R. B. Stabilization of Anionic Adducts in Negative Ion Electrospray Mass Spectrometry. Anal. Chem. 2002, 74, 985–991.CrossRefGoogle Scholar
  10. 10.
    Cech, N. B.; Enke, C. G. Practical Implications of Some Recent Studies in Electrospray Ionization Fundamentals. Mass Spectrom. Rev. 2001, 20, 362–387.CrossRefGoogle Scholar
  11. 11.
    Barnett, D.; Horlick, G. Quantitive Electrospray Mass Spectrometry of Halides and Halogenic Anions. J. Anal. At. Spectrom. 1997, 12, 497–501.CrossRefGoogle Scholar
  12. 12.
    Charles, L.; Chiron, J.; Galy, J. Characterization of Ammonium Chloride Derivatives by Salt Clustering in Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 2471–2474.CrossRefGoogle Scholar
  13. 13.
    Li, F.; Beyers, M. A.; Houk, R. S. Tandem Mass Spectrometry of Metal Nitrate Negative Ions Produced by Electrospray Ionization. J. Am. Soc. Mass Spectrom. 2003, 14, 671–679.CrossRefGoogle Scholar
  14. 14.
    Mollah, S.; Pris, A. D.; Johnson, S. K.; Gwizdala, A. B., III; Houk, R. S. Identification of Metal Cations, Metal Complexes, and Anions by Electrospray Mass Spectrometry in the Negative Ion Mode. Anal. Chem. 2000, 72, 985–991.CrossRefGoogle Scholar
  15. 15.
    Armentrout, P. B. Mass Spectrometry—Not Just a Structural Tool: The Use of Guided Ion Beam Mass Spectrometry to Determine Thermochemistry. J. Am. Soc. Mass Spectrom. 2002, 13, 419–434.CrossRefGoogle Scholar
  16. 16.
    Armentrout, P. B. Fundamentals of Ion-Molecule Chemistry. J. Anal. At. Spectrom. 2004, 19, 571–580.CrossRefGoogle Scholar
  17. 17.
    Armentrout, P. B. Kinetic Energy Dependence of Ion-Molecule Reactions: Guided Ion Beams and Threshold Measurements. Int. J. Mass Spectrom. 2000, 200, 219–241.CrossRefGoogle Scholar
  18. 18.
    Gutsev, G. L.; Bartlett, R. J.; Boldyrev, A. I.; Simmons, J. Adiabatic Electron Affinities of Small Superhalogens: LiF2, LiCl2, NaF2, and NaCl2. J. Chem. Phys. 1997, 107, 3867–3875.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  1. 1.Ames Laboratory, U.S. Department of Energy, Department of ChemistryIowa State UniversityAmesUSA

Personalised recommendations