Resolution and structural transitions of elongated states of ubiquitin

Article

Abstract

Electrospray ionization, combined with two-dimensional ion mobility spectrometry and mass spectrometry, is used to produce, select, and activate distributions of elongated ions, [M+11H]11+ to [M+13H]13+, of ubiquitin. The analysis makes it possible to examine state-to-state transitions for structural types, and transition diagrams associated with the efficiencies of structural changes are presented. The +11 and +12 charge states can form four resolvable states while only one state is formed for [M+13H]13+. Some conformations, which appear to belong to the same family based on mobility analysis of different charge states, undergo similar transitions, others do not. Activation of ions that exist in low-abundance conformations, having mobilities that fall in between sharp peaks associated with higher abundances species, shows that the low-abundance forms undergo efficient (∼90 to 100%) conversion into states associated with well-defined peaks. This efficiency is significantly higher than the ∼10 to 60% efficiency of transitions of structures associated with well-defined peaks. The formation of sharp features from a range of low-intensity species with different cross sections indicates that large regions of conformation space must be unfavorable or inaccessible in the gas phase. These results are compared with several previous IMS measurements of this system as well as information about gas-phase structure provided by other techniques.

References

  1. 1.(a)
    Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem 1988, 60, 2299–2301.CrossRefGoogle Scholar
  2. 1.(b)
    Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom 1988, 2, 151–153.CrossRefGoogle Scholar
  3. 1.(c)
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246, 64–71.CrossRefGoogle Scholar
  4. 1.(d)
    Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471–473.CrossRefGoogle Scholar
  5. 2.(a)
    Suckau, D.; Shi, Y.; Beu, S. C.; Senko, M. W.; Quinn, J. P.; Wampler, F. W.; McLafferty, F. W. Coexisting Stable Conformations of Gaseous Protein Ions. Proc. Natl. Acad. Sci. U.S.A 1993, 90, 790–793.CrossRefGoogle Scholar
  6. 2.(b)
    Wood, T. D.; Chorush, R. A.; Wampler, F. M.; Little, D. P.; O’Connor, P. B.; McLafferty, F. W. Gas-Phase Folding and Unfolding of Cytochrome c Cations. Proc. Natl. Acad. Sci. U.S.A 1995, 92, 2451–2454.CrossRefGoogle Scholar
  7. 3.
    Wolynes, P. G. Biomolecular Folding in Vacuo!!!(?). Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 2426–2427.CrossRefGoogle Scholar
  8. 4.
    Rodriguez-Cruz, S. E.; Klassen, J. S.; Williams, E. R. Hydration of Gas-Phase Gramicidin S (M+2H)2+ Ions Formed by Electrospray: The Transition From Solution to Gas-Phase Structure. J. Am. Soc. Mass. Spectrom 1997, 8, 565–568.CrossRefGoogle Scholar
  9. 5.
    Woenckhaus, J.; Mao, Y.; Jarrold, M. F. Hydration of Gas Phase Proteins: Folded +5 and Unfolded +7 Charge States of Cytochrome c. J. Phys. Chem. B 1997, 101, 847–851.CrossRefGoogle Scholar
  10. 6.(a)
    Jarrold, M. F. Unfolding, Refolding, and Hydration of Proteins in the Gas Phase. Acc. Chem. Res 1999, 32, 360–367.CrossRefGoogle Scholar
  11. 6.(b)
    Jarrold, M. F. Peptides and Proteins in the Vapor Phase. Ann. Rev. Phys. Chem 2000, 51, 179–207.CrossRefGoogle Scholar
  12. 7.
    Lee, S.-W.; Freivogel, P.; Schindler, T.; Beauchamp, J. L. Freeze-Dried Biomolecules: FT-ICR Studies of the Specific Solvation of Functional Groups and Clathrate Formation Observed by the Slow Evaporation of Water from Hydrated Peptides and Model Compounds in the Gas Phase. J. Am. Chem. Soc 1998, 120, 11758–11765.CrossRefGoogle Scholar
  13. 8.
    Hoaglund-Hyzer, C. S.; Counterman, A. E.; Clemmer, D. E. Anhydrous Protein Ions. Chem. Rev 1999, 99, 3037–3079.CrossRefGoogle Scholar
  14. 9.
    Woenckhaus, J. Drift Time Mass Spectrometric Protein Hydration Experiments. Int. J. Mass Spectrom 2002, 213, 9–24.CrossRefGoogle Scholar
  15. 10.
    Breuker, K.; McLafferty, F. W. The Thermal Unfolding of Native Cytochrome c in the Transition from Solution to Gas Phase Probed by Native Electron Capture Dissociation. Angew. Chem. Int. Ed 2005, 44, 4911–4914.CrossRefGoogle Scholar
  16. 11.
    Barran, P. E.; Polfer, N. C.; Campopiano, D. J.; Clarke, D. J.; Langridge-Smith, P. R. R.; Langley, R. J.; Govan, J. R. W.; Maxwell, A.; Dorin, J. R.; Millar, R. P.; Bowers, M. T. Is it Biologically Relevant to Measure the Structures of Small Peptides in the Gas-Phase?. Int. J. Mass Spectrom 2005, 240, 273–284.CrossRefGoogle Scholar
  17. 12.(a)
    Chowdhury, S. K.; Katta, V.; Chait, B. T. Probing Conformational Changes in Proteins by Mass Spectrometry. J. Am. Chem. Soc 1990, 112, 9012–9013.CrossRefGoogle Scholar
  18. 12.(b)
    Mirza, U. A.; Chait, B. T. Do Proteins Denature During Droplet Evolution in Electrospray Ionization? Int. J. Mass Spectrom. Ion Processes 1997, 162, 173–181.CrossRefGoogle Scholar
  19. 13.
    Konermann, L.; Douglas, D. J. Equilibrium Unfolding of Proteins Monitored by Electrospray Ionization Mass Spectrometry: Distinguishing Two-State from Multi-State Transitions. Rapid Commun. Mass Spectrom 1998, 12, 435–442.CrossRefGoogle Scholar
  20. 14.(a)
    von Helden, G.; Wyttenbach, T.; Bowers, M. T. Conformation of Macromolecules in the Gas-Phase Use of Matrix-Assisted Laser-Desorption Methods in Ion Chromatography. Science 1995, 267, 1483–1485.CrossRefGoogle Scholar
  21. 14.(b)
    Wyttenbach, T.; von Helden, G.; Bowers, M. T. Gas-Phase Conformation of Biological Molecules: Bradykinin. J. Am. Chem. Soc 1996, 118, 8355–8364.CrossRefGoogle Scholar
  22. 15.
    Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. Naked Protein Conformations: Cytochrome c in the Gas Phase. J. Am. Chem. Soc 1995, 117, 10141–10142.CrossRefGoogle Scholar
  23. 16.
    Shelimov, K. B.; Jarrold, M. F. “Denaturation” and Refolding of Cytochrome c in Vacuo. J. Am. Chem. Soc 1996, 118, 10313–10314.CrossRefGoogle Scholar
  24. 17.(a)
    Valentine, S. J.; Clemmer, D. E. H/D Exchange Levels of Shape-Resolved Cytochrome c Conformers in the Gas Phase. J. Am. Chem. Soc 1997, 119, 3558–3566.CrossRefGoogle Scholar
  25. 17.(b)
    Valentine, S. J.; Anderson, J. G.; Ellington, A. D.; Clemmer, D. E. Disulfide-Intact and -Reduced Lysozyme in the Gas Phase: Conformations and Pathways of Folding and Unfolding. J. Phys. Chem. B 1997, 101, 3891–3900.CrossRefGoogle Scholar
  26. 18.
    Jin, L.; Barran, P. E.; Deakin, J. A.; Lyon, M.; Uhrin, D. Conformation of Glycosaminoglycans by Ion Mobility Mass Spectrometry and Molecular Modeling. Phys. Chem. Chem. Phys 2005, 7, 3464–3471.CrossRefGoogle Scholar
  27. 19.
    Ruotolo, B. T.; Giles, K.; Campuzano, I.; Sandercock, A. M.; Bateman, R. H.; Robinson, C. V. Evidence for Macromolecular Protein Rings in the Absence of Bulk Water. Science 2005, 310, 1658–1661.CrossRefGoogle Scholar
  28. 20.(a)
    Bernstein, S. L.; Wyttenbach, T.; Baumketnert, A.; Shea, J. E.; Bitan, G.; Teplow, D. B.; Bowers, M. T. Amyloid β-Protein: Monomer Structure and Early Aggregation States of A β 42 and its Pro(19) Alloform. J. Am. Chem. Soc 2005, 127, 2075–2084.CrossRefGoogle Scholar
  29. 20.(b)
    Baumketner, A.; Bernstein, S. L.; Wyttenbach, T.; Bitan, G.; Teplow, D. B.; Bowers, M. T.; Shea, J. E. Amyloid β-Protein Monomer Structure: A Computational and Experimental Study. Prot. Sci 2006, 15, 420–428.CrossRefGoogle Scholar
  30. 21.(a)
    Clemmer, D. E.; Jarrold, M. F. Ion Mobility Measurements and Their Applications to Clusters and Biomolecules. J. Mass Spectrom 1997, 32, 577–592.CrossRefGoogle Scholar
  31. 21.(b)
    Wu, C.; Siems, W. F.; Klasmeier, J.; Hill, H. H. Separation of Isomeric Peptides Using Electrospray Ionization/High-Resolution Ion Mobility Spectrometry. Anal. Chem 2000, 72, 391–395.CrossRefGoogle Scholar
  32. 21.(c)
    Hoaglund-Hyzer, C. S.; Lee, Y. J.; Counterman, A. E.; Clemmer, D. E. Coupling Ion Mobility Separations, Collisional Activation Techniques, and Multiple Stages of MS for Analysis of Complex Peptide Mixtures. Anal. Chem 2002, 74, 992–1006.CrossRefGoogle Scholar
  33. 22.(d)
    Collins, D. C.; Lee, M. L. Developments in Ion Mobility Spectrometry-Mass Spectrometry. Anal. Bioanal. Chem 2002, 372, 66–73.CrossRefGoogle Scholar
  34. 22.(e)
    Wyttenbach, T.; Bowers, M. T. Gas-Phase Conformations: The Ion Mobility/Ion Chromatography Method. Top. Curr. Chem 2003, 225, 207–232.CrossRefGoogle Scholar
  35. 22.(f)
    Creaser, C. S.; Griffiths, J. R.; Bramwell, C. J.; Noreen, S.; Hill, C. A.; Thomas, C. L. P. Ion Mobility Spectrometry: A Review. Part 1. Structural Analysis by Mobility Measurement. Analyst 2004, 129, 984–994.CrossRefGoogle Scholar
  36. 22.(g)
    Guevremont, R. High-Field Asymmetric Waveform Ion Mobility Spectrometry: A New Tool for Mass Spectrometry. J. Chrom. A 2004, 1058, 3–19.CrossRefGoogle Scholar
  37. 22.(h)
    McLean, J. A.; Ruotolo, B. T.; Gillig, K. J.; Russell, D. H. Ion Mobility-Mass Spectrometry: A New Paradigm for Proteomics. Int. J. Mass Spectrom 2005, 240, 301–315.CrossRefGoogle Scholar
  38. 22.(i)
    Tang, K. Q.; Li, F. M.; Shvartsburg, A. A.; Strittmatter, E. F.; Smith, R. D. Two-Dimensional Gas-Phase Separations Coupled to Mass Spectrometry for Analysis of Complex Mixtures. Anal. Chem 2005, 77, 6381–6388.CrossRefGoogle Scholar
  39. 22.(j)
    Clowers, B. H.; Hill, H. H. Mass Analysis of Mobility-Selected Ion Populations Using Dual Gate Ion Mobility Quadrupole Ion Trap Mass Spectrometry. Anal. Chem 2005, 77, 5877–5885.CrossRefGoogle Scholar
  40. 22.(k)
    Tang, K.; Shvartsburg, A. A.; Lee, H. N.; Prior, D. C.; Buschbach, M. A.; Li, F. M.; Tolmachev, A. V.; Anderson, G. A.; Smith, R. D. High-Sensitivity Ion Mobility Spectrometry/Mass Spectrometry Using Electrodynamic Ion Funnel Interfaces. Anal. Chem 2005, 77, 3330–3339.CrossRefGoogle Scholar
  41. 23.
    Koeniger, S. L.; Merenbloom, S. I.; Valentine, S. J.; Jarrold, M. F.; Udseth, R. D.; Smith, R. D.; Clemmer, D. E. An IMS-IMS Analogue of MS-MS. Anal. Chem 2006, 78, 4161–4174.CrossRefGoogle Scholar
  42. 24.
    Koeniger, S. L.; Merenbloom, S. I.; Clemmer, D. E. Evidence for Many Resolvable Structures within Conformation Types of Electrosprayed Ubiquitin Ions. J. Phys. Chem. B 2006, 110, 7017–7021.CrossRefGoogle Scholar
  43. 25.
    Merenbloom, S. I.; Koeniger, S. L.; Valentine, S. J.; Plasencia, M. D.; Clemmer, D. E. IMS-IMS and IMS-IMS-IMS/MS for Separating Peptide and Protein Fragment Ions. Anal. Chem 2006, 78, 2802–2809.CrossRefGoogle Scholar
  44. 26.
    Koeniger, S. L.; Merenbloom, S. I.; Sevugarajan, S.; Clemmer, D. E. Transfer of Structural Elements from Compact to Extended States in Unsolvated Ubiquitin. J. Am. Chem. Soc 2006, 128, 11713–11719.CrossRefGoogle Scholar
  45. 27.(a)
    Katta, V.; Chait, B. T. Conformational Changes in Proteins Probed by Hydrogen-Exchange Electrospray-Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom 1991, 5, 214–217.CrossRefGoogle Scholar
  46. 27.(b)
    Katta, V.; Chait, B. T. Hydrogen-Deuterium Exchange Electrospray-Ionization Mass-Spectrometry—A Method for Probing Protein Conformational Changes in Solution. J. Am. Chem. Soc 1993, 115, 6317–6321.CrossRefGoogle Scholar
  47. 28.
    Loo, R. R. O.; Smith, R. D. Investigation of the Gas-Phase Structures of Electrosprayed Proteins Using Ion-Molecule Reactions. J. Am. Soc. Mass Spectrom 1994, 5, 207–220.CrossRefGoogle Scholar
  48. 29.
    Loo, J. A.; Quinn, J. P.; Ryu, S. I.; Henry, K. D.; Senko, M. W.; McLafferty, F. W. High-Resolution Tandem Mass-Spectrometry of Large Biomolecules. Proc. Natl. Acad. Sci. U.S.A 1992, 89, 286–289.CrossRefGoogle Scholar
  49. 30.
    Senko, M. W.; Hendrickson, C. L.; Pasa-Tolic, L.; Marto, J. A.; White, F. M.; Guan, S. H.; Marshall, A. G. Electrospray Ionization Fourier Transform Ion Cyclotron Resonance at 9.4 T. Rapid Commun. Mass Spectrom 1996, 10, 1824–1828.CrossRefGoogle Scholar
  50. 31.
    Valentine, S. J.; Counterman, A. E.; Clemmer, D. E. Conformer-Dependent Proton-Transfer Reactions of Ubiquitin Ions. J. Am. Chem. Soc. Mass Spectrom 1997, 8, 954–961.CrossRefGoogle Scholar
  51. 32.
    Li, J.; Taraszka, J. A.; Counterman, A. E.; Clemmer, D. E. Influence of Solvent Composition and Capillary Temperature on the Conformations of Electrosprayed Ions: Unfolding of Compact Ubiquitin Conformers from Pseudonative and Denatured Solutions. Int. J. Mass Spectrom 1999, 185/186/187, 37–47.CrossRefGoogle Scholar
  52. 33.
    Covey, T.; Douglas, D. J. Collision Cross-Sections for Protein Ions. J. Am. Soc. Mass Spectrom 1993, 4, 616–623.CrossRefGoogle Scholar
  53. 34.
    Cox, K. A.; Julian, R. K., Jr.; Cooks, R. G.; Kaiser, R. E., Jr. Conformer Selection of Protein Ions by Ion Mobility in a Triple Quadrupole Mass-Spectrometer. J. Am. Chem. Soc. Mass Spectrom 1994, 5, 127–136.CrossRefGoogle Scholar
  54. 35.(a)
    Schnier, P. D.; Gross, D. S.; Williams, E. R. Electrostatic Forces and Dielectric Polarizability of Multiply Protonated Gas-Phase Cytochrome c Ions Probed by Ion/Molecule Chemistry. J. Am. Chem. Soc 1995, 117, 6747–6757.CrossRefGoogle Scholar
  55. 35.(b)
    Gross, D. S.; Williams, E. R. Experimental Measurement of Coulomb Energy and Intrinsic Dielectric Polarizability of a Multiply Protonated Peptide Ion Using Electrospray Ionization Fourier-Transform Mass Spectrometry. J. Am. Chem. Soc 1995, 117, 883–890.CrossRefGoogle Scholar
  56. 35.(c)
    Williams, E. R. Proton Transfer Reactivity of Large Multiply Charged Ions. J. Mass Spectrom 1996, 31, 831–842.CrossRefGoogle Scholar
  57. 36.(a)
    Cassady, C. J.; Wronka, J.; Kruppa, G. H.; Laukien, F. H. Deprotonation Reactions of Multiply Protonated Ubiquitin Ions. Rapid Commun. Mass Spectrum 1994, 8, 394–400.CrossRefGoogle Scholar
  58. 36.(b)
    Cassady, C. J.; Carr, S. R. Elucidation of Isomeric Structures for Ubiquitin [M+12H]12+ Ions Produced by Electrospray Ionization Mass Spectrometry. J. Mass Spectrom 1996, 31, 247–254.CrossRefGoogle Scholar
  59. 36.(c)
    Zhang, X.; Cassady, C. J. Apparent Gas-Phase Acidities of Multiply Protonated Peptide Ions: Ubiquitin, Insulin B, and Renin Substrate. J. Am. Soc. Mass Spectrom 1996, 7, 1211–1218.CrossRefGoogle Scholar
  60. 37.
    Freitas, M. A.; Hendrickson, C. L.; Emmett, M. R.; Marshall, A. G. Gas-Phase Bovine Ubiquitin Cation Conformations Resolved by Gas-Phase Hydrogen/Deuterium Exchange Rate and Extent. Int. J. Mass Spectrom 1999, 187, 565–575.CrossRefGoogle Scholar
  61. 38.
    Evans, S. E.; Lueck, N.; Marzluff, E. M. Gas Phase Hydrogen/Deuterium Exchange of Proteins in an Ion Trap Mass Spectrometer. Int. J. Mass Spectrom 2003, 222, 175–187.CrossRefGoogle Scholar
  62. 39.
    Geller, O.; Lifshitz, C. A Fast Flow Tube Study of Gas Phase H/D Exchange of Multiply Protonated Ubiquitin. J. Phys. Chem. A 2005, 109, 2217–2222.CrossRefGoogle Scholar
  63. 40.
    Robinson, E. W.; Williams, E. R. Multidimensional Separations of Ubiquitin Conformers in the Gas Phase: Relating Ion Cross Sections to H/D Exchange Measurements. J. Am. Soc. Mass Spectrom 2005, 16, 1427–1437.CrossRefGoogle Scholar
  64. 41.
    Badman, E. R.; Hoaglund-Hyzer, C. S.; Clemmer, D. E. Gas-Phase Separations of Protein and Peptide Ion Fragments Generated by Collision-Induced Dissociation in an Ion Trap. Anal. Chem 2001, 73, 6000–6007.CrossRefGoogle Scholar
  65. 42.
    Myung, S.; Badman, E.; Lee, Y. J.; Clemmer, D. E. Structural Transitions of Electrosprayed Ubiquitin Ions Stored in an Ion Trap over ∼10 ms to 30 s. J. Phys. Chem. A 2002, 106, 9976–9982.CrossRefGoogle Scholar
  66. 43.(a)
    Purves, R. W.; Barnett, D. A.; Ells, B.; Guevremont, R. Investigation of Bovine Ubiquitin Conformers Separated by High-Field Asymmetric Waveform Ion Mobility spectrometry: Cross Section Measurements Using Energy-Loss Experiments with a Triple Quadrupole Mass Spectrometer. J. Am. Soc. Mass Spectrom 2000, 11, 738–745.CrossRefGoogle Scholar
  67. 43.(b)
    Purves, R. W.; Barnett, D. A.; Ells, B.; Guevremont, R. Elongated Conformers of Charge States +11 to +15 of Bovine Ubiquitin Studied Using. ESI-FAIMS-MS. J. Am. Soc. Mass Spectrom 2001, 12, 894–901.CrossRefGoogle Scholar
  68. 44.
    Shvartsburg, A. A., Fumin, L., Tang, K., Smith, R. D. Characterizing the Structures and Folding of Free Proteins Using 2-D Gas-Phase Separations: Observation of Multiple Unfolded Conformers. Anal. Chem. Articles ASAP, DOI: 10.1021/ac060283z.Google Scholar
  69. 45.
    Purves, R. W.; Barnett, D. A.; Guevremont, R. Separation of Protein Conformers Using Electrospray-High Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometry. Int. J. Mass Spectrom 2000, 197, 163–177.CrossRefGoogle Scholar
  70. 46.
    Wyttenbach, T.; Kemper, P. R.; Bowers, M. T. Design of a New Electrospray Ion Mobility Mass Spectrometer. Int. J. Mass Spectrom 2001, 212, 13–23.CrossRefGoogle Scholar
  71. 47.
    Badman, E.; Myung, S.; Clemmer, D. E. Evidence for Unfolding and Refolding of Gas Phase Cystochrome c Ions in a Paul Trap. J. Am. Soc. Mass Spectrom 2005, 16, 1493–1497.CrossRefGoogle Scholar
  72. 48.
    McLuckey, S. A.; Wells, J. M.; Stephenson, J. L.; Goeringer, D. E. Novel Quadrupole Ion Trap Methods for Characterizing the Chemistry of Gaseous Macro-Ions. Int. J. Mass Spectrom 2000, 200, 137–161.CrossRefGoogle Scholar
  73. 49.
    Rockwood, A. L.; Busman, M.; Smith, R. D. Coulombic Effects in the Dissociation of Large Highly Charged Ions. Int. J. Mass Spectrom 1991, 111, 103–129.CrossRefGoogle Scholar
  74. 50.
    Gross, D. S.; Schnier, P. D.; Rodriguez-Cruz, S. E.; Fagerquist, C. K.; Williams, E. R. Conformations and Folding of Lysozyme Ions in Vacuo. Proc. Natl. Acad. Sci. U.S.A 1996, 93, 3143–3148.CrossRefGoogle Scholar
  75. 51.
    Mason, E. A.; McDaniel, E. W. Transport Properties of Ions in Gases; Wiley: New York, 1988, p 276.CrossRefGoogle Scholar
  76. 52.
    Badman, E. R.; Hoaglund-Hyzer, C. S.; Clemmer, D. E. Dissociation of Different Conformations of Ubiquitin Ions. J. Am. Soc. Mass Spectrom 2002, 13, 719–723.CrossRefGoogle Scholar
  77. 53.
    Edman, L.; Mets, U.; Rigler, R. Conformational Transitions Monitored for Single Molecules in Solution. Proc. Natl. Acad. Sci. U.S.A 1996, 93, 6710–6715.CrossRefGoogle Scholar
  78. 54.
    Kellermayer, M. S. Z.; Smith, S. B.; Granzier, H. L.; Bustamante, C. Folding-Unfolding Transitions in Single Titin Molecules Characterized with Laser Tweezers. Science 1997, 276, 1112–1116.CrossRefGoogle Scholar
  79. 55.
    Lu, H. P.; Xun, L. Y.; Xie, X. S. Single-Molecule Enzymatic Dynamics. Science 1998, 282, 1877–1882.CrossRefGoogle Scholar
  80. 56.(a)
    Ha, T. J.; Ting, A. Y.; Liang, J.; Caldwell, W. B.; Deniz, A. A.; Chemla, D. S.; Schultz, P. G.; Weiss, S. Single-Molecule Fluorescence Spectroscopy of Enzyme Conformational Dynamics and Cleavage Mechanism. Proc. Natl. Acad. Sci. U.S.A 1999, 96, 893–898.CrossRefGoogle Scholar
  81. 56.(b)
    Deniz, A. A.; Laurence, T. A.; Beligere, G. S.; Dahan, M.; Martin, A. B.; Chemla, D. S.; Dawson, P. E.; Schultz, P. G.; Weiss, S. Single-Molecule Protein Folding: Diffusion Fluorescence Resonance Energy Transfer Studies of the Denaturation of Chymotrypsin Inhibitor 2. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 5179–5184.CrossRefGoogle Scholar
  82. 57.
    Schuler, B.; Lipman, E. A.; Eaton, W. A. Probing the Free-Energy Surface for Protein Folding with Single-Molecule Fluorescence Spectroscopy. Nature 2002, 419, 743–747.CrossRefGoogle Scholar
  83. 58.
    Fernandez, J. M.; Li, H. B. Force-Clamp Spectroscopy Monitors the Folding Trajectory of a Single Protein. Science 2004, 303, 1674–1678.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations