Characterization of isomeric cationic porphyrins with β-pyrrolic substituents by electrospray mass spectrometry: The singular behavior of a potential virus photoinactivator

  • Raul A. Izquierdo
  • Cristina M. Barros
  • M. Graça Santana-Marques
  • A. J. Ferrer-Correia
  • Eduarda M. P. Silva
  • Francesca Giuntini
  • Maria A. F. Faustino
  • João P. C. Tomé
  • Augusto C. Tomé
  • Artur M. S. Silva
  • Graça P. M. S. Neves
  • J. A. S. Cavaleiro
  • Andreia F. Peixoto
  • Mariette M. Pereira
  • Alberto A. C. C. Pais
Article

Abstract

Electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS) have been used to differentiate the 2- and 4-methylpyridyl isomers of free-base and metallated cationic β-vinylpyridylporphyrins. The analysis by ESI-MS/MS of the deuterated analogs and semiempirical calculations of structural and electronic parameters were also undertaken. The two free-base isomers are easily differentiated by ESI-MS/MS but the presence of a metallic center renders differentiation of the metallated isomers less effective. The data acquired show that of all the studied compounds, the free-base 2-methylpyridyl isomer, which was operative in the in vitro photoinactivation of Herpes simples virus, has a different gas-phase behavior. Local distortion of the macrocycle due to the presence of the β-vinylpyridyl substituent occurs for all the compounds, but a different electron density distribution can account for the observed gas-phase behavior of this potential virus photoinactivator.

References

  1. 1.
    Pandey, R. K.; Zheng, G. Porphyrins as Photosensitizers in Photodynamic Therapy. In The Porphyrin Handbook, vol. VI; Kadish, K. M.; Smith, K. M.; Guilard R., Eds.; Academic Press: San Diego, CA, 2000; p 158.Google Scholar
  2. 2.
    Bonnett R. Chemical Aspects of Photodynamic Therapy; Gordon and Breach Science Publishers: London, 2000.Google Scholar
  3. 3.
    Wainwright, M. Photodynamic Antimicrobial Chemotherapy (PACT). J. Antimicrob. Chemother. 1998, 42, 13–28.CrossRefGoogle Scholar
  4. 4.
    Hamblin, M. R.; Hasan, T. Photodynamic Therapy: A New Antimicrobial Approach to Infectious Disease?. Photochem. Photobiol. Sci. 2004, 3, 436–450.CrossRefGoogle Scholar
  5. 5.
    Pinna, A. D.; Rakela, J.; Demetris, A. J.; Fung, J. J. Five Cases of Fulminant Hepatitis Due to Herpes simplex Virus in Adults. Dig. Dis. Sci. 2002, 47, 750–754.CrossRefGoogle Scholar
  6. 6.
    Silva, E. M. P.; Giuntini, F.; Faustino, M. A. F.; Tomé, J. P. C.; Neves, M. G. P. M. S.; Tomé, A. C.; Silva, A. M. S.; Santana-Marques, M. G.; Ferrer-Correia, A. J.; Cavaleiro, J. A. S.; Caeiro, M. F.; Duarte, R. R.; Tavares, S. A. P.; Pegado, I. N.; d’Almeida, B.; De Matos, A. P. A.; Valdeira, M. L. Synthesis of Cationic β-Vinyl Substituted meso-Tetraphenylporphyrins and Their in Vitro Activity against Herpes simplex Virus Type 1. Bioorg. Med. Chem. Lett. 2005, 15, 3333–3337.CrossRefGoogle Scholar
  7. 7.
    Van Berkel, G. J.; McLuckey, S. A.; Glish, G. L. Electrospray Ionization of Porphyrins Using a Quadrupole Ion Trap for Mass Analysis. Anal. Chem. 1991, 63, 1098–1109.CrossRefGoogle Scholar
  8. 8.
    Vandell, V. E.; Limbach, P. A. Electrospray Ionization Mass Spectrometry of Metalloporphyrins. J. Mass Spectrom. 1998, 33, 212–220.CrossRefGoogle Scholar
  9. 9.
    Witowska-Jarosz, J.; Gorski, L.; Malinowska, E.; Jarosz, M. Mass Spectrometric Investigation of Gallium and Zirconium Complexes with Octaethylporphyrin and Tetraphenylporphyrin. J. Mass Spectrom. 2002, 37, 1236–1241.CrossRefGoogle Scholar
  10. 9.(b)
    Witowska-Jarosz, J.; Gorski, L.; Malinowska, E.; Jarosz, M. Electrospray Mass Spectrometric Investigation of the Influence of the Nature of Mobile Phase on the Ionization of Gallium and Zirconium Porphyrins. J. Mass Spectrom. 2003, 38, 1265–1266.CrossRefGoogle Scholar
  11. 10.
    Batinic-Haberle, I.; Stevens, R. D.; Fridovich, I. Electrospray Mass Spectrometry of Isomeric Tetrakis(N-alkylpyridyl)porphyrins and Their Manganese(III) Complexes. J. Porphyrins Phthalocyanines 2000, 4, 217–227.CrossRefGoogle Scholar
  12. 11.
    Kachadourian, R.; Srinivasan, N.; Haney, C. A.; Stevens, R. D. An LDI-TOF and ESI Mass Spectrometry Study of a Series of β-Substituted Cationic Metalloporphyrins. J. Porphyrins Phthalocyanines 2001, 5, 507–511.CrossRefGoogle Scholar
  13. 12.
    Silva, E. M. P.; Domingues, M. R. M.; Barros, C.; Faustino, M. A. F.; Tomé, J. P. C.; Neves, M. G. P. M. S.; Tomé, A. C.; Santana-Marques, M. G.; Cavaleiro, J. A. S.; Ferrer-Correia, A. J. Characterization of Dinitroporphyrin Zinc Complexes by Electrospray Ionization Tandem Mass Spectrometry: Unusual Fragmentations of β-(1,3-Dinitroalkyl)Porphyrins. J. Mass Spectrom. 2005, 40, 117–122.CrossRefGoogle Scholar
  14. 13.
    Lau, K. S. F.; Sadilek, M.; Khalil, G. E.; Gouterman, M.; Bruckner, C. Electrospray Ionization (ESI) Tandem Mass Spectrometric Analysis of meso-Tetrakis(Heptafluoropropyl)Porphyrin. J. Am. Soc. Mass Spectrom. 2005, 16, 1915–1920.CrossRefGoogle Scholar
  15. 14.
    Senge, M. O. Exercises in Molecular Gymnastics—Bending, Stretching, and Twisting Porphyrins. Chem. Commun. 2006, 3, 9725–9742.Google Scholar
  16. 15.
    Gruden, M.; Grubišić, S.; Coutselos, A. G.; Niketić, S. R. Conformational Analysis of Octa- and Tetrahalogenated Tetraphenylporphyrins and Their Metal Derivatives. J. Mol. Struct. 2001, 595, 209–224.CrossRefGoogle Scholar
  17. 16.
    Michel, H.; Epp, O.; Deisenhofer, J. Pigment-Protein Interactions in the Photosynthetic Reaction Center from Rhodopseudomonas viridis. EMBO J 1986, 5, 2445–2451.Google Scholar
  18. 17.
    Barkigia, K. M.; Chantranupong, L.; Smith, K. M.; Fajer, J. Structural and Theoretical Models of Photosynthetic Chromophores: Implications for Redox, Light Absorption Properties, and Vectorial Electron Flow. J. Am. Chem. Soc. 1988, 110, 7566–7567.CrossRefGoogle Scholar
  19. 18.
    Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347–1363.CrossRefGoogle Scholar
  20. 19.
    Stewart, J. J. P. Optimization Parameters for Semiempirical Methods: II. Applications. J. Comput. Chem. 1989, 10, 221–264.CrossRefGoogle Scholar
  21. 20.
    Pappu, R. V.; Hart, R. K.; Ponder, J. W. Analysis and Application of Potential Energy Smoothing and Search Methods for Global Optimization. J. Phys. Chem. B 1998, 102, 9725–9742.CrossRefGoogle Scholar
  22. 21.
    Domingues, M. R. M.; Marques, M. G. O. S.; Alonso, C. M. A.; Neves, M. G. P. M. S.; Cavaleiro, J. A. S.; Ferrer-Correia, A. J.; Nemirovskiy, O. V.; Gross, M. L. Unexpected Fragmentation of β-Substituted meso-Tetraphenylporphyrins Induced by High-Energy Collisional Activation. J. Am. Soc. Mass Spectrom. 2002, 13, 1427–1431.CrossRefGoogle Scholar
  23. 22.
    Izquierdo, R. A.; Barros, C. M.; Santana-Marques, M. G.; Ferrer-Correia, A. J.; Silva, A. M. G.; Tomé, A. C.; Silva, A.; Neves, M. G. P. M. S.; Cavaleiro, J. A. S. Cycloreversion and Other Gas-Phase Reactions of Neutral and Cationic Pyrrolidine-Fused Chlorins and Isobacteriochlorins Under Ion Bombardment and Electrospray. Rapid Commun. Mass Spectrom. 2004, 18, 2601–2611.CrossRefGoogle Scholar
  24. 23.
    Fermi, G.; Perutz, J. F.; Shaanan, B.; Fourne, R. The Crystal Structure of Human Deoxyhemoglobin at 1.74 Å Resolution. J. Mol. Biol. 1984, 175, 159–174.CrossRefGoogle Scholar
  25. 24.
    Finzel, B. C.; Poulos, T. L.; Kraut, J. Crystal Structure of Yeast Cytochrome c Peroxidase Refined at 1.7 Å Resolution. J. Biol. Chem. 1984, 259, 3027–3036.Google Scholar
  26. 25.
    Senge, M. Highly Substituted Porphyrins. In The Porphyrin Handbook, Vol. I; Kadish, K. M.; Smith, K. M.; Guilard R., Eds.; Academic Press: San Diego, CA, 2000; p 239.Google Scholar
  27. 26.
    Barkigia, K. M.; Berber, M. D.; Fajer, J. C.; Medforth, J.; Renner, M. W.; Smith, K. M. Nonplanar Porphyrins: X-Ray Structures of (2,3,7,8,12,13,17,18-Octaethyl-5,10,15,20-Tetraphenylporphinato)Zinc(II) and (2,3,7,8,12,13,17,18-Octamethyl-5,10,15,20-Tetraphenylporphinato)Zinc(II). J. Am. Chem. Soc. 1990, 112, 8851–8857.CrossRefGoogle Scholar
  28. 27.
    Medforth, C. J.; Smith, K. M. The Synthesis and Solution Conformation of Dodecaphenylporphyrin. Tetrahedron Lett. 1990, 31, 3719–3722.CrossRefGoogle Scholar
  29. 28.
    Peixoto, A. F.; Pereira, M. M.; Sousa, A. F.; Pais, A. A. C. C.; Neves, M. G. P. M. S.; Silva, A. M. S.; Cavaleiro, J. A. S. Improving Regioselectivity in the Rhodium Catalyzed Hydroformylation of Protoporphyrin-IX and Chlorophyll a Derivatives. J. Mol. Catal. A Chem. 2005, 235, 185–193.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  • Raul A. Izquierdo
    • 1
  • Cristina M. Barros
    • 1
  • M. Graça Santana-Marques
    • 1
  • A. J. Ferrer-Correia
    • 1
  • Eduarda M. P. Silva
    • 2
  • Francesca Giuntini
    • 2
  • Maria A. F. Faustino
    • 2
  • João P. C. Tomé
    • 2
  • Augusto C. Tomé
    • 2
  • Artur M. S. Silva
    • 2
  • Graça P. M. S. Neves
    • 2
  • J. A. S. Cavaleiro
    • 2
  • Andreia F. Peixoto
    • 3
  • Mariette M. Pereira
    • 3
  • Alberto A. C. C. Pais
    • 3
  1. 1.Mass Spectrometry Laboratory, Department of ChemistryUniversity of AveiroAveiroPortugal
  2. 2.Organic Chemistry Laboratory, Department of ChemistryUniversity of AveiroAveiroPortugal
  3. 3.Department of ChemistryUniversity of CoimbraCoimbraPortugal

Personalised recommendations