Gas phase noncovalent protein complexes that retain solution binding properties: Binding of xylobiose inhibitors to the β-1, 4 exoglucanase from Cellulomonas fimi

  • Milica Tešić
  • Jacqueline Wicki
  • David K. Y. Poon
  • Stephen G. Withers
  • Donald J. Douglas


Tandem mass spectrometry has been used to compare gas-phase and solution binding of three small-molecule inhibitors to the wild type and three mutant forms of the catalytic domain of Cex, an enzyme that hydrolyses xylan and xylo-oligosaccharides. The inhibitors, xylobiosyl-deoxynojirimycin, xylobiosyl-isofagomine lactam, and xylobiosyl-isofagomine consist of a common distal xylose linked to different proximal aza-sugars. The three mutant forms of the enzyme contain the substitutions Asn44Ala, Gln87Met, and Gln87Tyr that alter the binding interactions between Cex and the distal sugar of each inhibitor. An electrospray ionization (ESI) triple quadrupole MS/MS system is used to measure the internal energies, ΔE int, that must be added to gas-phase ions to cause dissociation of the noncovalent enzyme-inhibitor complexes. Collision cross sections of ions of the apo-enzyme and enzyme-inhibitor complexes, which are required for the calculations of ΔE int, have also been measured. The results show that, in the gas phase, enzyme-inhibitor complexes have more compact, folded conformations than the corresponding apo-enzyme ions. With the mutant enzymes, the effects of substituting a single residue can be detected. The energies required to dissociate the gas-phase complexes follow the same trend as the values of ΔG 0 for dissociation of the complexes in solution. This trend is observed both with different inhibitors, which probe binding to the proximal sugar, and with mutants of Cex, which probe binding to the distal sugar. Thus the gas-phase complexes appear to retain much of their solution binding characteristics.


Charge State Internal Energy Electrospray Ionization Mass Spectrometry Collision Cross Section NONCOVALENT Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Covey, T. R.; Bonner, R. F.; Shushan, B. I.; Henion, J. The Determination of Protein, Oligonucleotide, and Peptide Molecular Weights by Ion-Spray Mass Spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 249–256.CrossRefGoogle Scholar
  2. 2.
    Edmonds, C. G.; Loo, J. A.; Barinaga, C. J.; Udseth, H. R.; Smith, R. D. Capillary Electrophoresis Electrospray Ionization Mass Spectrometry. J. Chromatogr. 1989, 474, 21–37.CrossRefGoogle Scholar
  3. 3.
    Ganem, B.; Li, Y. T.; Henion, J. D. Detection of Noncovalent Receptor-Ligand Complexes by Mass Spectrometry. J. Am. Chem. Soc. 1991, 113, 6294–6296.CrossRefGoogle Scholar
  4. 4.
    Loo, J. A. Studying Noncovalent Protein Complexes by Electrospray Ionization Mass Spectrometry. Mass Spectrom. Rev. 1997, 16, 1–23.CrossRefGoogle Scholar
  5. 5.
    Pramanik, B. N.; Bartner, P. L.; Mirza, U. A.; Liu, Y. H.; Ganguly, A. K. Electrospray Ionization Mass Spectrometry for the Study of Noncovalent Complexes: An Emerging Technology. J. Mass Spectrom. 1998, 33, 911–920.CrossRefGoogle Scholar
  6. 6.
    Hoaglund-Hyzer, C. S.; Counterman, A. E.; Clemmer, D. E. Anhydrous Protein Ions. Chem. Rev. 1999, 99, 3037–3099.CrossRefGoogle Scholar
  7. 7.
    Kitova, E.; Bundle, D. R.; Klassen, J. S. Thermal Dissociation of Protein-Oligosaccharide Complexes in the Gas Phase: Mapping the Intrinsic Intermolecular Interactions. J. Am. Chem. Soc. 2002, 124, 5902–5913.CrossRefGoogle Scholar
  8. 8.
    Hunter, C. L.; Mauk, A. G.; Douglas, D. J. Dissociation of Heme from Myoglobin and Cytochrome b 5: Comparison of Behavior in Solution and the Gas Phase. Biochemistry 1997, 36, 1018–1025.CrossRefGoogle Scholar
  9. 9.
    Schnier, P. D.; Klassen, J. S.; Strittmatter, E. F.; Williams, E. R. Activation Energies for Dissociation of Double Strand Oligonucleotide Anions: Evidence for Watson-Crick Pairing in Vacuo. J. Am. Chem. Soc. 1998, 120, 9605–9613.CrossRefGoogle Scholar
  10. 10.
    Wan, K. X.; Gross, M. L.; Shibue, T. Gas-Phase Stability of Double Stranded Oligodeoxynucleotides and Their Noncovalent Complexes With DNA-Binding Drugs as Revealed by Collisional Activation in an Ion Trap. J. Am. Soc. Mass Spectrom. 2000, 11, 450–457.CrossRefGoogle Scholar
  11. 11.
    Potier, N.; Barth, P.; Tritsch, D.; Biellmann, J.-F.; Van Dorsselaer, A. Study of Noncovalent Enzyme-Inhibitor Complexes of Aldose Reductase by Electrospray Mass Spectrometry. Eur. J. Biochem. 1997, 243, 274–282.CrossRefGoogle Scholar
  12. 12.
    Jørgensen, T. J. D.; Delforge, D.; Remacle, J.; Bojensen, G.; Roepstorff, P. Collision-Induced Dissociation of Noncovalent Complexes between Vancomycin Antibiotics and Peptide Ligand Stereoisomers: Evidence for Molecular Recognition in the Gas Phase. Int. J. Mass Spectrom. 1999, 188, 63–85.CrossRefGoogle Scholar
  13. 13.
    van der Kerk-van Hoof, A.; Heck, A. J. R. Covalent and Noncovalent Dissociations of Gas-Phase Complexes of Avoparcin and Bacterial Receptor Mimicking Precursor Peptides Studied by Collisionally Activated Decomposition Mass Spectrometry. J. Mass Spectrom. 1999, 34, 813–819.CrossRefGoogle Scholar
  14. 14.
    Gao, J.; Wu, Q.; Carbeck, J.; Lei, Q. P.; Smith, R. D.; Whitesides, G. M. Probing the Energetics of Dissociation of Carbonic Anhydrase-Ligand Complexes in the Gas Phase. Biophys. J. 1999, 76, 3253–3260.CrossRefGoogle Scholar
  15. 15.
    Rostom, A.; Tame, J. R. H.; Ladbury, J. E.; Robinson, C. V. Specificity and Interactions of the Protein OppA: Partitioning Solvent Binding Effects Using Mass Spectrometry. J. Mol. Biol. 2000, 296, 269–279.CrossRefGoogle Scholar
  16. 16.
    Kitova, E. N.; Wang, W.; Bundle, D. R.; Klassen, J. S. Retention of Bioactive Ligand Conformation in a Gaseous Protein Trisaccharide Complex. J. Am. Chem. Soc. 2002, 124, 13980–13981.CrossRefGoogle Scholar
  17. 17.
    Kitova, E. N.; Bundle, D. R.; Klassen, J. S. Evidence for the Preservation of Specific Intermolecular Interactions in Gaseous Protein-Oligosaccharide Complexes. J. Am. Chem. Soc. 2002, 124, 9340–9341.CrossRefGoogle Scholar
  18. 18.
    Williams, S. J.; Hoos, R.; Withers, S. G. Nanomolar Versus Millimolar Inhibition by Xylobiose-Derived Aza-Sugars: Significant Differences Between Two Structurally Distinct Xylanases. J. Am. Chem. Soc. 2000, 122, 2223–2235.CrossRefGoogle Scholar
  19. 19.(a)
    Williams, S. J.; Notenboom, V.; Wicki, J.; Rose, D. R.; Withers, S. G. A New, Simple, High-Affinity Glycosidase Inhibitor: Analysis of Binding Through X-Ray Crystallography, Mutagenesis, and Kinetic Analysis. J. Am. Chem. Soc. 2000, 122, 4229–4230;CrossRefGoogle Scholar
  20. 19.(b)
    Wicki, J.; Withers, S. G., unpublished.Google Scholar
  21. 20.
    Notenboom, V.; Williams, S. J.; Hoos, R.; Withers, S. G.; Rose, D. R. Detailed Structural Analysis of Glycosidase/Inhibitor Interactions: Complexes of Cex from Cellulomonas fimi with Xylobiose-Derived Aza-Sugars. Biochemistry 2000, 39, 11553–11563.CrossRefGoogle Scholar
  22. 21.
    Notenboom, V.; Birsan, C.; Warren, R. A. J.; Withers, S. G.; Rose, D. R. Exploring the Cellulose/Xylan Specificity of the β-1,4-Glycanase Cex from Cellulomonas fimi through Crystallography and Mutation. Biochemistry 1998, 37, 4751–4758.CrossRefGoogle Scholar
  23. 22.
    MacLeod, A. M.; Lindhorst, T.; Withers, S. G.; Warren, R. A. J. The Acid/Base Catalyst in the Exoglucanase/Xylanase from Cellulomonas fimi is Glutamic Acid 127: Evidence from Detailed Kinetic Studies of Mutants. Biochemistry 1994, 33, 6371–6376.CrossRefGoogle Scholar
  24. 23.
    Muchmore, D. C.; McIntosh, L. P.; Russell, C. B.; Anderson, D. E.; Dahlquist, F. W. Expression and Nitrogen-15 Labeling of Proteins for Proton and Nitrogen-15 Nuclear Magnetic Resonance. Methods Enzymol. 1989, 177, 44–73.CrossRefGoogle Scholar
  25. 24.(a)
    Kamatari, Y. O.; Ohji, S.; Konno, T.; Yasutaka, S.; Kunitsugu, S.; Kataoka, M.; Akasaka, K. The compact and denatured conformations of apomyoglobin in the methanol-water solvent. Protein Sci. 1999, 8, 873–882;CrossRefGoogle Scholar
  26. 24.(b)
    Babu, K. R.; Moradian, A.; Douglas, D. J. The Methanol-Induced Conformational Transitions of β-Lactoglobulin, Cytochrome c, and Ubiquitin at Low pH: A Study by Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 317–328.CrossRefGoogle Scholar
  27. 25.
    Mauk, M. R.; Mauk, A. G.; Chen, Y. L.; Douglas, D. J. Tandem Mass Spectrometry of Protein-Protein Complexes: Cytochrome c-Cytochrome b 5. J. Am. Soc. Mass Spectrom. 2002, 13, 59–71.CrossRefGoogle Scholar
  28. 26.
    Chen, Y. L.; Collings, B. A.; Douglas, D. J. Collision Cross Sections of Myoglobin and Cytochrome c Ions with Ne, Ar, and Kr. J. Am. Soc. Mass Spectrom. 1997, 8, 681–687.CrossRefGoogle Scholar
  29. 27.
    Douglas, D. J.; French, J. B. Collisional Focusing Effects in Radio Frequency Quadrupoles. J. Am. Soc. Mass Spectrom. 1992, 3, 398–408.CrossRefGoogle Scholar
  30. 28.
    White, A.; Withers, S. G.; Gilkes, N. R.; Rose, D. R. Crystal Structure of the Catalytic Domain of the β-1,4 Glycanase Cex from Cellulomanas fimi. Biochemistry 1994, 33, 12546–12552.CrossRefGoogle Scholar
  31. 29.
    Woodward, J. In Topics in Enzyme and Fermentation Biotechnology, VIII; Wiseman A., Ed.; Ellis Horwood Limited: Chichester, England, 1984, p 17.Google Scholar
  32. 30.
    Heck, A. J. R.; van den Heuvel, R. H. H. Investigation of Intact Protein Complexes by Mass Spectrometry. Mass Spectrom. Rev. 2004, 23, 368–389.CrossRefGoogle Scholar
  33. 31.
    Wang, W.; Kitova, E. N.; Klassen, J. Bioactive Recognition Sites May Not Be Energetically Preferred in Protein-Carbohydrate Complexes in the Gas Phase. J. Am. Chem. Soc. 2003, 125, 13630–13631.CrossRefGoogle Scholar
  34. 32.
    Collings, B. A.; Douglas, D. J. Conformation of Gas-Phase Myoglobin Ions. J. Am. Chem. Soc. 1996, 118, 4488–4489.CrossRefGoogle Scholar
  35. 33.
    Poon, D. K. Y.; Schubert, M.; Ludwiczek, M. L.; Kwan, E. M.; Withers, S. G.; McIntosh, L. P., unpublished.Google Scholar
  36. 34.
    Badman, E. R.; Hoaglund-Hyzer, C. S.; Clemmer, D. E. Monitoring Structural Changes of a Protein in an Ion Trap over ∼10–200 ms: Unfolding Transitions in Cytochrome c Ions. Anal. Chem. 2001, 73, 6000–6007.CrossRefGoogle Scholar
  37. 35.
    O’Neill, G. P.; Kilburn, D. G.; Warren, R. A.; Miller, R. C., Jr. Overproduction from a Cellulase Gene with a High Guanosine-plus-Cytosine Content in Escherichia coli. Appl. Environ. Microbiol. 1986, 52, 737–743.Google Scholar
  38. 36.(a)
    Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M. R.; Appel, R. D.; Bairoch, A. Protein Identification and Analysis Tools. In The Proteomics Protocols Handbook; Walker, J. M., Ed.; Humana Press: Totowa, NJ, 2005; pp 571–607;CrossRefGoogle Scholar
  39. 36.(b)
    Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T. How to Measure and Predict the Molar Absorption Coefficient of a Protein. Protein Sci. 1995, 4, 2411–2423.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2007

Authors and Affiliations

  • Milica Tešić
    • 1
  • Jacqueline Wicki
    • 1
  • David K. Y. Poon
    • 1
  • Stephen G. Withers
    • 1
  • Donald J. Douglas
    • 1
  1. 1.Department of ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations