Journal of the American Society for Mass Spectrometry

, Volume 17, Issue 12, pp 1725–1730

Electrospray tandem mass spectrometry analysis of S- and N-nitrosopeptides: Facile loss of NO and radical-induced fragmentation

Short Communication

Abstract

The covalent addition of nitric oxide (NO) to protein thiols, a posttranslational modification termed S-nitrosation, is a ubiquitous event that modulates diverse cellular processes. The in vivo addition of NO to protein amines (N-nitrosation) has also been described and may similarly modify protein structure and function. While mass spectrometry has been employed for identification of nitrosoproteins, little is known about how S- and N-nitrosopeptides fragment. Such knowledge is important for its potential to inform on sites of protein nitrosation. Here we used electrospray tandem mass spectrometry to elucidate collision-induced dissociation (CID) features of S- and N-nitrosopeptide ions. We show that S- and N-nitrosopeptide ions readily lose NO, giving rise to species that contain thiyl and aminyl radicals, respectively. Fragmentation (MS3) of these radical peptide ions revealed an atypical pattern, characterized by the cleavage of select αC-C and N-αC bonds, rather than the more usual cleavage of amide bonds that result in b- and y-ions. These unanticipated fragmentation patterns are reconciled by radical-mediated abstraction of hydrogen from β-carbon followed by β-fragmentation. For thiyl radical peptides, we also observed dominant loss of SH and CH2SH from the Cys side-chain. Our findings provide new insights into the gas-phase chemistry of NO-modified peptide ions and suggest an unusual fragmentation pattern that may aid in future MS-based attempts to define the nitrosoproteome.

References

  1. 1.
    Nathan, C. The Moving Frontier in Nitric Oxide-Dependent Signaling. Sci. STKE 2004, e52.Google Scholar
  2. 2.
    Hess, D. T.; Matsumoto, A.; Kim, S. O.; Marshall, H. E.; Stamler, J. S. Protein S-Nitrosylation: Purview and Parameters. Nat. Rev. Mol. Cell. Biol. 2005, 6, 150–166.CrossRefGoogle Scholar
  3. 3.
    Lane, P.; Hao, G.; Gross, S. S. S-Nitrosylation is Emerging as a Specific and Fundamental Posttranslational Protein Modification: Head-to-Head Comparison with O-Phosphorylation. Sci. STKE 2001, RE1.Google Scholar
  4. 4.
    Jaffrey, S. R.; Erdjument-Bromage, H.; Ferris, C. D.; Tempst, P.; Snyder, S. H. Protein S-Nitrosylation: A Physiological Signal for Neuronal Nitric Oxide. Nat. Cell. Biol. 2001, 3, 193–197.CrossRefGoogle Scholar
  5. 5.
    Hao, G.; Derakhshan, B.; Shi, L.; Campagne, F.; Gross, S. S. SNOSID, a Proteomic Method for Identification of Cysteine S-Nitrosylation Sites in Complex Protein Mixtures. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 1012–1017.CrossRefGoogle Scholar
  6. 6.
    Rassaf, T.; Bryan, N. S.; Kelm, M.; Feelisch, M. Concomitant Presence of N-Nitroso and S-Nitroso Proteins in Human Plasma. Free Rad. Biol. Med. 2002, 33, 1590–1596.CrossRefGoogle Scholar
  7. 7.
    Bryan, N. S.; Rassaf, T.; Maloney, R. E.; Rodriguez, C. M.; Saijo, F.; Rodriguez, J. R.; Feelisch, M. Cellular Targets and Mechanisms of Nitros(yl)ation: An Insight into Their Nature and Kinetics in Vivo. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 4308–4313.CrossRefGoogle Scholar
  8. 8.
    Kirsch, M.; Fuchs, A.; de Groot, H. Regiospecific Nitrosation of N-Terminal-Blocked Tryptophan Derivatives by N2O3 at Physiological pH. J. Biol. Chem. 2003, 278, 11931–11936.CrossRefGoogle Scholar
  9. 9.
    Zhang, Y. Y.; Xu, A. M.; Nomen, M.; Walsh, M.; Keaney, J. F. Jr.; Loscalzo, J. Nitrosation of Tryptophan Residue(s) in Serum Albumin and Model Dipeptides: Biochemical Characterization and Bioactivity. J. Biol. Chem. 1996, 271, 14271–14279.CrossRefGoogle Scholar
  10. 10.
    Sonnenschein, K.; de Groot, H.; Kirsch, M. Formation of S-Nitrosothiols from Regiospecific Reaction of Thiols with N-Nitrosotryptophan Derivatives. J. Biol. Chem. 2004, 279, 45433–45440.CrossRefGoogle Scholar
  11. 11.
    Mirza, U. A.; Chait, B. T.; Lander, H. M. Monitoring Reactions of Nitric Oxide with Peptides and Proteins by Electrospray Ionization-Mass Spectrometry. J. Biol. Chem. 1995, 270, 17185–17188.CrossRefGoogle Scholar
  12. 12.
    Ferranti, P.; Malorni, A.; Mamone, G.; Sannolo, N.; Marino, G. Characterization of S-Nitrosohaemoglobin by Mass Spectrometry. FEBS Lett. 1997, 400, 19–24.CrossRefGoogle Scholar
  13. 13.
    Singh, R. J.; Hogg, N.; Joseph, J.; Kalyanaraman, B. Mechanism of Nitric Oxide Release from S-Nitrosothiols. J. Biol. Chem. 1996, 271, 18596–18603.CrossRefGoogle Scholar
  14. 14.
    Zhu, X. Q.; He, J. Q.; Li, Q.; Xian, M.; Lu, J.; Cheng, J. P. N-NO Bond Dissociation Energies of N-Nitroso Diphenylamine Derivatives and Their Radical Anions. J. Org. Chem. 2000, 65, 6729–6735.CrossRefGoogle Scholar
  15. 15.
    Kaneko, R.; Wada, Y. Decomposition of Protein Nitrosothiolsin Matrix-Assisted Laser Desorption/Ionization and Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2003, 38, 526–530.CrossRefGoogle Scholar
  16. 16.
    Stamler, J. S.; Jia, L.; Eu, J. P.; McMahon, T. J.; Demchenko, I. T.; Bonaventura, J.; Gernert, K.; Piantadosi, C. A. Blood Flow Regulation by S-Nitrosohaemoglobin in the Physiological Oxygen Gradient. Science 1997, 276, 2034–2037.CrossRefGoogle Scholar
  17. 17.
    Wee, S.; O’Hair, R. A.; McFadyen, W. D. Gas-Phase Ligand Loss and Ligand Substitution Reactions of Platinum(II) Complexes of Tridentate Nitrogen Donor Ligands. Rapid Commun. Mass Spectrom. 2004, 18, 1221–1226.CrossRefGoogle Scholar
  18. 18.
    Zubarev, R. A. Reactions of Polypeptide Ions with Electrons in the Gas Phase. Mass Spectrom. Rev. 2003, 22, 57–77.CrossRefGoogle Scholar
  19. 19.
    Masterson, D. S.; Yin, H.; Chacon, A.; Hachey, D. L.; Norris, J. L.; Porter, N. A. Lysine Peroxycarbamates: Free Radical-Promoted Peptide Cleavage. J. Am. Chem. Soc. 2004, 126, 720–721.CrossRefGoogle Scholar
  20. 20.
    Hodyss, R.; Cox, H. A.; Beauchamp, J. L. Bioconjugates for Tunable Peptide Fragmentation: Free Radical Initiated Peptide Sequencing (FRIPS). J. Am. Chem. Soc. 2005, 127, 12436–12437.CrossRefGoogle Scholar
  21. 21.
    Nauser, T.; Pelling, J.; Schoneich, C. Thiyl Radical Reaction with Amino Acid Side Cchains: Rate Constants for Hydrogen Transfer and Relevance for Posttranslational Protein Modification. Chem. Res. Toxicol. 2004, 17, 1323–1328.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  1. 1.Department of PharmacologyWeill Medical College of Cornell UniversityNew YorkUSA
  2. 2.Altus PharmaceuticalsCambridgeUSA

Personalised recommendations