Advertisement

Solvent accessibility of protein surfaces by amide H/2H exchange MALDI-TOF mass spectrometry

  • Stephanie M. E. Truhlar
  • Carrie H. Croy
  • Justin W. Torpey
  • Julia R. Koeppe
  • Elizabeth A. Komives
Focus: Hydrogen Exchange And Covalent Modification

Abstract

One advantage of detecting amide H/2H exchange by mass spectrometry instead of NMR is that the more rapidly exchanging surface amides are still detectable. In this study, we present quench-flow amide H/2H exchange experiments to probe how rapidly the surfaces of two different proteins exchange. We compared the amide H/2H exchange behavior of thrombin, a globular protein, and IκBα, a nonglobular protein, to explore any differences in the determinants of amide H/2H exchange rates for each class of protein. The rates of exchange of only a few of the surface amides were as rapid as the “intrinsic” exchange rates measured for amides in unstructured peptides. Most of the surface amides exchanged at a slower rate, despite the fact that they were not seen to be hydrogen bonded to another protein group in the crystal structure. To elucidate the influence of the surface environment on amide H/2H exchange, we compared exchange data with the number of amides participating in hydrogen bonds with other protein groups and with the solvent accessible surface area. The best correlation with amide H/2H exchange was found with the total solvent accessible surface area, including side chains. In the case of the globular protein, the correlation was modest, whereas it was well correlated for the nonglobular protein. The nonglobular protein also showed a correlation between amide exchange and hydrogen bonding. These data suggest that other factors, such as complex dynamic behavior and surface burial, may alter the expected exchange rates in globular proteins more than in nonglobular proteins where all of the residues are near the surface.

References

  1. 1.
    Zhang, Z.; Smith, D. L. Determination of Amide Hydrogen Exchange by Mass Spectrometry: A New Tool for Protein Structure Elucidation. Protein Sci. 1993, 2, 522–531.CrossRefGoogle Scholar
  2. 2.
    Jorgensen, T. J.; Gardsvoll, H.; Ploug, M.; Roepstorff, P. Intramolecular Migration of Amide Hydrogens in Protonated Peptides Upon Collisional Activation. J. Am. Chem. Soc. 2005, 127, 2785–2793.CrossRefGoogle Scholar
  3. 3.
    Jorgensen, T. J.; Bache, N.; Roepstorff, P.; Gardsvoll, H.; Ploug, M. Collisional Activation by MALDI Tandem Time-of-Flight Mass Spectrometry Induces Intramolecular Migration of Amide Hydrogens in Protonated Peptides. Mol. Cell. Proteom. 2005, 4, 1910–1919.CrossRefGoogle Scholar
  4. 4.
    Dharmasiri, K.; Smith, D. L. Mass Spectrometric Determination of Isotopic Exchange Rates of Amide Hydrogens Located on the Surfaces of Proteins. Anal. Chem. 1996, 68, 2340–2344.CrossRefGoogle Scholar
  5. 5.
    Croy, C. H.; Koeppe, J. R.; Bergqvist, S.; Komives, E. A. Allosteric Changes in Solvent Accessibility Observed in Thrombin Upon Active Site Occupation. Biochemistry 2004, 43, 5246–5255.CrossRefGoogle Scholar
  6. 6.
    Orban, J.; Alexander, P.; Bryan, P. Hydrogen—Deuterium Exchange in the Free and Immunoglobulin G-Bound Protein G B Domain. Biochem. 1994, 33, 5702–5710.CrossRefGoogle Scholar
  7. 7.
    Englander, S.; Mayne, L. Protein Folding Studied Using Hydrogen-Exchange Labeling and Two-Dimensional NMR. Annu. Rev. Biophys. Biomol. Struct. 1992, 21, 243–265.CrossRefGoogle Scholar
  8. 8.
    Hughes, C. A.; Mandell, J. G.; Anand, G. S.; Stock, A. M.; Komives, E. A. Phosphorylation Causes Subtle Changes in Solvent Accessibility at the Interdomain Interface of Methylesterase CheB. J. Mol. Biol. 2001, 307, 967–976.CrossRefGoogle Scholar
  9. 9.
    Yan, X.; Watson, J.; Ho, P. S.; Deinzer, M. L. Mass Spectrometric Approaches Using Electrospray Ionization Charge States and Hydrogen—Deuterium Exchange for Determining Protein Structures and Their Conformational Changes. Mol. Cell. Proteom. 2004, 3, 10–23.CrossRefGoogle Scholar
  10. 10.
    Shoemaker, B. A.; Wang, J.; Wolynes, P. G. Exploring Structures in Protein Folding Funnels with Free Energy Functional: The Transition State Ensemble. J. Mol. Biol. 1999, 287, 675–694.CrossRefGoogle Scholar
  11. 11.
    Shoemaker, B. A.; Wolynes, P. G. Exploring Structures in Protein Folding Funnels with Free Energy Functionals: The Denatured Ensemble. J. Mol. Biol. 1999, 287, 657–674.CrossRefGoogle Scholar
  12. 12.
    Milne, J. S.; Mayne, L.; Roder, H.; Wand, A. J.; Englander, S. W. Determinants of Protein Hydrogen Exchange Studied in Equine Cytochrome c. Prot. Sci. 1998, 7, 739–745.CrossRefGoogle Scholar
  13. 13.
    Mosavi, L. K.; Minor, D. L. Jr.; Peng, Z. Y. Consensus-Derived Structural Determinants of the Ankyrin Repeat Motif. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 16029–16034.CrossRefGoogle Scholar
  14. 14.
    Jeng, M. F.; Dyson, H. J. Comparison of the Hydrogen-Exchange Behavior of Reduced and Oxidized Escherichia coli Thioredoxin. Biochemistry 1994, 34, 611–619.CrossRefGoogle Scholar
  15. 15.
    Gemmecker, G.; Jahnke, W.; Kessler, H. Measurement of Fast Proton Exchange Rates in Isotopically Labeled Compounds. J. Am. Chem. Soc. 1993, 115, 11620–11621.CrossRefGoogle Scholar
  16. 16.
    Ni, F.; Konishi, Y.; Scheraga, H. A. Thrombin-Bound Conformation of the C-Terminal Fragments of Hirudin Determined by Transferred Nuclear Overhauser Effects. Biochemistry 1990, 29, 4479–4489.CrossRefGoogle Scholar
  17. 17.
    Fenton, J. W. Thrombin. Ann. N. Y. Acad. Sci. 1986, 485, 5–15.CrossRefGoogle Scholar
  18. 18.
    Studier, F. W.; Rosenberg, A. H.; Dunn, J. J.; Dubendorff, J. W. Use of T7 RNA Polymerase to Direct Expression of Cloned Genes. Methods Enzymol. 1990, 185, 60–89.CrossRefGoogle Scholar
  19. 19.
    Croy, C. H.; Bergqvist, S.; Huxford, T.; Ghosh, G.; Komives, E. A. Biophysical Characterization of the Free IκBα Ankyrin Repeat Domain in Solution. Prot. Sci. 2004, 13, 1767–1777.CrossRefGoogle Scholar
  20. 20.
    Huxford, T.; Huang, D. B.; Malek, S.; Ghosh, G. The Crystal Structure of the IκBα/NF-κB Complex Reveals Mechanisms of NF-κB Inactivation. Cell 1998, 95, 759–770.CrossRefGoogle Scholar
  21. 21.
    Mandell, J. G.; Falick, A. M.; Komives, E. A. Measurement of Amide Hydrogen Exchange by MALDI-TOF Mass Spectrometry. Anal. Chem. 1998, 70, 3987–3995.CrossRefGoogle Scholar
  22. 22.
    Hughes, C. A.; Mandell, J. G.; Anand, G. S.; Stock, A. M.; Komives, E. A. Phosphorylation Causes Subtle Changes in Solvent Accessibility at the Interdomain Interface of Methylesterase CheB. J. Mol. Biol. 2001, 307, 967–976.CrossRefGoogle Scholar
  23. 23.
    Mandell, J. G.; Falick, A. M.; Komives, E. A. Identification of Protein—Protein Interfaces by Decreased Amide Proton Solvent Accessibility. Proc. Nat. Acad. Sci. U.S.A. 1998, 95, 14705–14710.CrossRefGoogle Scholar
  24. 24.
    Djordjevic, S.; Stock, A. M. Structural Analysis of Bacterial Chemotaxis Proteins: Components of a Dynamic Signaling System. J. Struct. Biol. 1998, 124, 189–200.CrossRefGoogle Scholar
  25. 25.
    Jacobs, M. D.; Harrison, S. C. Structure of an IκBα/NF-κB complex. Cell 1998, 95, 749–758.CrossRefGoogle Scholar
  26. 26.
    Bode, W.; Turk, D.; Karshikov, A. The Refined 1. 9-A X-ray Crystal Structure of D-Phe-Pro-Arg Chloromethylketone-Inhibited Human α-Thrombin: Structure Analysis, Overall Structure, Electrostatic Properties, Detailed Active-Site Geometry, and Structure-Function Relationships. Prot. Sci. 1992, 1, 426–471.CrossRefGoogle Scholar
  27. 27.
    Brandstetter, H.; Turk, D.; Hoeffken, H. W.; Grosse, D.; Sturzebecher, J.; Martin, P. D.; Edwards, B. F.; Bode, W. Refined 2. 3 A X-ray Crystal Structure of Bovine Thrombin Complexes Formed with the Benzamidine and Arginine-Based Thrombin Inhibitors NAPAP, 4-TAPAP, and MQPA: A Starting Point for Improving Antithrombotics. J. Mol. Biol. 1992, 226, 1085–1099.CrossRefGoogle Scholar
  28. 28.
    Huntington, J. A.; Esmon, C. T. The Molecular Basis of Thrombin Allostery Revealed by a 1.8 A Structure of the “Slow” Form. Structure 2003, 11, 469–479.CrossRefGoogle Scholar
  29. 29.
    Fraczkiewicz, R.; Braun, W. Exact and Efficient Analytical Calculation of the Accessible Surface Areas and Their Gradients for Macromolecules. J. Comput. Chem. 1998, 19, 319–333.CrossRefGoogle Scholar
  30. 30.
    Bai, Y.; Milne, J. S.; Mayne, L.; Englander, S. W. Primary Structure Effects on Peptide Group Hydrogen Exchange. Proteins 1993, 17, 75–86.CrossRefGoogle Scholar
  31. 31.
    Dharmasiri, K.; Smith, D. L. Mass Spectrometric Determination of Isotopic Exchange Rates of Amide Hydrogens Located on the Surfaces of Proteins. Anal. Chem. 1996, 68, 2340–2344.CrossRefGoogle Scholar
  32. 32.
    De Lano, W. L. The PyMOL User’s Manual; DeLano Scientific: San Carlos, CA, 2002.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  • Stephanie M. E. Truhlar
    • 1
  • Carrie H. Croy
    • 1
  • Justin W. Torpey
    • 1
  • Julia R. Koeppe
    • 1
  • Elizabeth A. Komives
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of California-San DiegoLa JollaUSA

Personalised recommendations