Journal of the American Society for Mass Spectrometry

, Volume 17, Issue 11, pp 1605–1615

Use of a double resonance electron capture dissociation experiment to probe fragment intermediate lifetimes

  • Cheng Lin
  • Jason J. Cournoyer
  • Peter B. O’Connor
Articles

Abstract

The relative abundances of fragment ions in electron capture dissociation (ECD) are often greatly affected by the secondary and tertiary structures of the precursor ion, and have been used to derive the gas-phase conformations of the protein ions. In this study, it is found that resonance ejection of the charge reduced molecular ion during ECD resulted in significant changes in many fragment ion populations. The ratio of the ion peak intensities in the double resonance (DR)-ECD to that in the normal ECD experiment can be used to calculate the lifetime of the radical intermediates from which these fragments are derived. These lifetimes are often in the ms range, a time sufficiently long to facilitate multiple free radical rearrangements. These ratios correlate with the intramolecular noncovalent interactions in the precursor ion, and can be used to deduce information about the gas-phase conformation of peptide ions. DR-ECD experiments can also provide valuable information on ECD mechanisms, such as the importance of secondary electron capture and the origin of c·/z ions.

References

  1. 1.
    Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. Electron Capture Dissociation of Multiply Charged Protein Cations: A Nonergodic Process. J. Am. Chem. Soc 1998, 120, 3265–3266.CrossRefGoogle Scholar
  2. 2.
    Zubarev, R. A.; Horn, D. M.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, M. A.; Carpenter, B. K.; McLafferty, F. W. Electron Capture Dissociation for Structural Characterization of Multiply Charged Protein Cations. Anal. Chem 2000, 72, 563–573.CrossRefGoogle Scholar
  3. 3.
    McLafferty, F. W.; Horn, D. M.; Breuker, K.; Ge, Y.; Lewis, M. A.; Cerda, B.; Zubarev, R. A.; Carpenter, B. K. Electron Capture Dissociation of Gaseous Multiply Charged Ions by Fourier-Transform Ion Cyclotron Resonance. J. Am. Soc. Mass Spectrom 2001, 12, 245–249.CrossRefGoogle Scholar
  4. 4.
    Cooper, H. J.; Hakansson, K.; Marshall, A. G. The Role of Electron Capture Dissociation in Biomolecular Analysis. Mass Spectrom. Rev 2005, 24, 201–222.CrossRefGoogle Scholar
  5. 5.
    Leymarie, N.; Costello, C. E.; O’Connor, P. B. Electron Capture Dissociation Initiates a Free Radical Reaction Cascade. J. Am. Chem. Soc 2003, 125, 8949–8958.CrossRefGoogle Scholar
  6. 6.
    Kelleher, R. L.; Zubarev, R. A.; Bush, K.; Furie, B.; Furie, B. C.; McLafferty, F. W.; Walsh, C. T. Localization of Labile Posttranslational Modifications by Electron Capture Dissociation: The Case of γ-Carboxyglutamic Acid. Anal. Chem 1999, 71, 4250–4253.CrossRefGoogle Scholar
  7. 7.
    Mirgorodskaya, E.; Roepstorff, P.; Zubarev, R. A. Localization of O-Glycosylation Sites in Peptides by Electron Capture Dissociation in a Fourier Transform Mass Spectrometer. Anal. Chem 1999, 71, 4431–4436.CrossRefGoogle Scholar
  8. 8.
    Stensballe, A.; Jensen, O. N.; Olsen, J. V.; Haselmann, K. F.; Zubarev, R. A. Electron Capture Dissociation of Singly and Multiply Phosphorylated Peptides. Rapid Commun. Mass Spectrom 2000, 14, 1793–1800.CrossRefGoogle Scholar
  9. 9.
    Shi, S. D. H.; Hemling, M. E.; Carr, S. A.; Horn, D. M.; Lindh, I.; McLafferty, F. W. Phosphopeptide/Phosphoprotein Mapping by Electron Capture Dissociation Mass Spectrometry. Anal. Chem 2001, 73, 19–22.CrossRefGoogle Scholar
  10. 10.
    Zhao, C.; Sethuraman, M.; Clavreul, N.; Kaur, P.; Cohen, R. A.; O’Connor, P. B. A Detailed Map of Oxidative Post-Translational Modifications of Human p21ras Using Fourier Transform Mass Spectrometry. Anal. Chem. 2006, 78, 5134–5142.CrossRefGoogle Scholar
  11. 11.
    Syrstad, E. A.; Turecek, F. Toward a General Mechanism of Electron Capture Dissociation. J. Am. Soc. Mass Spectrom 2005, 16, 208–224.CrossRefGoogle Scholar
  12. 12.
    O’Connor, P. B.; Lin, C.; Cournoyer, J. J.; Pittman, J. L.; Belyayev, M.; Budnik, B. A. Long-Lived Electron Capture Dissociation Product Ions Experience Radical Migration via Hydrogen Abstraction. J. Am. Soc. Mass Spectrom 2006, 17, 576–585.CrossRefGoogle Scholar
  13. 13.
    Zubarev, R. A. Reactions of Polypeptide Ions with Electrons in the Gas Phase. Mass Spectrom. Rev 2003, 22, 57–77.CrossRefGoogle Scholar
  14. 14.
    Asam, M. R.; Glish, G. L. Determination of the Dissociation Kinetics of a Transient Intermediate. J. Am. Soc. Mass Spectrom 1999, 10, 119–125.CrossRefGoogle Scholar
  15. 15.
    Anders, L. R.; Beauchamp, J. L.; Dunbar, R. C.; Baldeschwieler, J. D. Ion-Cyclotron Double Resonance. J. Chem. Phys 1966, 45, 1062–1063.CrossRefGoogle Scholar
  16. 16.
    Comisarow, M. B.; Marshall, A. G. Fourier Transform Ion Cyclotron Resonance Spectroscopy. Chem. Phys. Lett 1974, 25, 282–283.CrossRefGoogle Scholar
  17. 17.
    Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: A primer. Mass Spectrom. Rev 1998, 17, 1–35.CrossRefGoogle Scholar
  18. 18.
    Asam, M. R.; Glish, G. L. Tandem Mass Spectrometry of Alkali Cationized Polysaccharides in a Quadrupole Ion Trap. J. Am. Soc. Mass Spectrom 1997, 8, 987–995.CrossRefGoogle Scholar
  19. 19.
    Comisarow, M. B.; Grassi, V.; Parisod, G. Fourier Transform Ion Cyclotron Double Resonance. Chem. Phys. Lett 1978, 57, 413–416.CrossRefGoogle Scholar
  20. 20.
    Jurchen, J. C.; Garcia, D. E.; Williams, E. R. Gas-Phase Dissociation Pathways of Multiply Charged Peptide Clusters. J. Am. Soc. Mass Spectrom 2003, 14, 1373–1386.CrossRefGoogle Scholar
  21. 21.
    Anicich, V. G.; Sen, A. D.; Huntress, W. T.; McEwan, M. J. Lifetime Measurement of a Collision Complex Using Ion—Cyclotron Double-Resonance (H2C6N2)+. J. Chem. Phys 1991, 94, 4189–4191.CrossRefGoogle Scholar
  22. 22.
    Budnik, B. A.; Nielsen, M. L.; Olsen, J. V.; Haselmann, K. F.; Horth, P.; Haehnel, W.; Zubarev, R. A. Can Relative Cleavage Frequencies in Peptides Provide Additional Sequence Information? Int. J. Mass Spectrom 2002, 219, 283–294.CrossRefGoogle Scholar
  23. 23.
    Suckau, D.; Shi, Y.; Beu, S. C.; Senko, M. W.; Quinn, J. P.; Wampler, F. M.; McLafferty, F. W. Coexisting Stable Conformations of Gaseous Protein Ions. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 790–793.CrossRefGoogle Scholar
  24. 24.
    Wood, T. D.; Chorush, R. A.; Wampler, F. M.; Little, D. P.; O’Connor, P. B.; McLafferty, F. W. Gas-Phase Folding and Unfolding of Cytochrome-c Cations. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 2451–2454.CrossRefGoogle Scholar
  25. 25.
    Freitas, M. A.; Hendrickson, C. L.; Emmett, M. R.; Marshall, A. G. Gas-Phase Bovine Ubiquitin Cation Conformations Resolved by Gas-Phase Hydrogen/Deuterium Exchange Rate and Extent. Int. J. Mass Spectrom 1999, 187, 565–575.CrossRefGoogle Scholar
  26. 26.
    Smith, D. L.; Deng, Y. Z.; Zhang, Z. Q. Probing the Noncovalent Structure of Proteins by Amide Hydrogen Exchange and Mass Spectrometry. J. Mass Spectrom 1997, 32, 135–146.CrossRefGoogle Scholar
  27. 27.
    Valentine, S. J.; Counterman, A. E.; Clemmer, D. E. Conformer-Dependent Proton-Transfer Reactions of Ubiquitin Ions. J. Am. Soc. Mass Spectrom 1997, 8, 954–961.CrossRefGoogle Scholar
  28. 28.
    Counterman, A. E.; Clemmer, D. E. Large Anhydrous Polyalanine Ions: Evidence for Extended Helices and Onset of a More Compact State. J. Am. Chem. Soc 2001, 123, 1490–1498.CrossRefGoogle Scholar
  29. 29.
    Wyttenbach, T.; Kemper, P. R.; Bowers, M. T. Design of a New Electrospray Ion Mobility Mass Spectrometer. Int. J. Mass Spectrom 2001, 212, 13–23.CrossRefGoogle Scholar
  30. 30.
    Kinnear, B. S.; Hartings, M. R.; Jarrold, M. F. The Energy Landscape of Unsolvated Peptides: Helix Formation and Cold Denaturation in Ac-A(4)G(7)A4+H+. J. Am. Chem. Soc 2002, 124, 4422–4431.CrossRefGoogle Scholar
  31. 31.
    Oh, H.; Breuker, K.; Sze, S. K.; Ge, Y.; Carpenter, B. K.; McLafferty, F. W. Secondary and Tertiary Structures of Gaseous Protein Ions Characterized by Electron Capture Dissociation Mass Spectrometry and Photofragment Spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 15863–15868.CrossRefGoogle Scholar
  32. 32.
    Oomens, J.; Polfer, N.; Moore, D. T.; van der Meer, L.; Marshall, A. G.; Eyler, J. R.; Meijer, G.; von Helden, G. Charge-State Resolved Mid-Infrared Spectroscopy of a Gas-Phase Protein. Phys. Chem. Chem. Phys 2005, 7, 1345–1348.CrossRefGoogle Scholar
  33. 33.
    Horn, D. M.; Breuker, K.; Frank, A. J.; McLafferty, F. W. Kinetic Intermediates in the Folding of Gaseous Protein Ions Characterized by Electron Capture Dissociation Mass Spectrometry. J. Am. Chem. Soc 2001, 123, 9792–9799.CrossRefGoogle Scholar
  34. 34.
    Breuker, K.; Oh, H. B.; Horn, D. M.; Cerda, B. A.; McLafferty, F. W. Detailed Unfolding and Folding of Gaseous Ubiquitin Ions Characterized by Electron Capture Dissociation. J. Am. Chem. Soc 2002, 124, 6407–6420.CrossRefGoogle Scholar
  35. 35.
    Breuker, K.; McLafferty, F. W. Native Electron Capture Dissociation for the Structural Characterization of Noncovalent Interactions in Native Cytochrome c. Angew. Chem. Int. Ed 2003, 42, 4900–4904.CrossRefGoogle Scholar
  36. 36.
    Mihalca, R.; Kleinnijenhuis, A. J.; McDonnell, L. A.; Heck, A. J. R.; Heeren, R. M. A. Electron Capture Dissociation at Low Temperatures Reveals Selective Dissociations. J. Am. Soc. Mass Spectrom 2004, 15, 1869–1873.CrossRefGoogle Scholar
  37. 37.
    Jebanathirajah, J. A.; Pittman, J. L.; Thomson, B. A.; Budnik, B. A.; Kaur, P.; Rape, M.; Kirschner, M.; Costello, C. E.; O’Connor, P. B. Characterization of a New qQq-FTICR Mass Spectrometer for Post-Translational Modification Analysis and Top-Down Tandem Mass Spectrometry of Whole Proteins. J. Am. Soc. Mass Spectrom 2005, 16, 1985–1999.CrossRefGoogle Scholar
  38. 38.
    O’Connor, P. B.; Pittman, J. L.; Thomson, B. A.; Budnik, B. A.; Cournoyer, J. C.; Jebanathirajah, J.; Lin, C.; Moyer, S.; Zhao, C. A New Hybrid Electrospray Fourier Transform Mass Spectrometer: Design and Performance Characteristics. Rapid Commun. Mass Spectrom 2006, 20, 259–266.CrossRefGoogle Scholar
  39. 39.
    Newcomb, M. Competition Methods and Scales for Alkyl Radical Reaction-Kinetics. Tetrahedron 1993, 49, 1151–1176.CrossRefGoogle Scholar
  40. 40.
    Bazzo, R.; Tappin, M. J.; Pastore, A.; Harvey, T. S.; Carver, J. A.; Campbell, I. D. The Structure of Melittin-a H-1-NMR Study in Methanol. Eur. J. Biochem 1998, 173, 139–146.CrossRefGoogle Scholar
  41. 41.
    Kaltashov, I. A.; Fenselau, C. Stability of Secondary Structural Elements in a Solvent-Free Environment: The α Helix. Proteins: Struct. Funct. Genet 1997, 27, 165–170.CrossRefGoogle Scholar
  42. 42.
    Kweon, H. K.; Hakansson, K. Site-Specific Amide Hydrogen Exchange in Melittin Probed by Electron Capture Dissociation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analyst 2006, 131, 275–280.CrossRefGoogle Scholar
  43. 43.
    Hudgins, R. R.; Jarrold, M. F. Helix Formation in Unsolvated Alanine-Based Peptides: Helical Monomers and Helical Dimers. J. Am. Chem. Soc 1999, 121, 3494–3501.CrossRefGoogle Scholar
  44. 44.
    Zubarev, R. A.; Haselmann, K. F.; Budnik, B.; Kjeldsen, F.; Jensen, F. Towards an Understanding of the Mechanism of Electron-Capture Dissociation: A Historical Perspective and Modern Ideas. Eur. J. Mass Spectrom 2002, 8, 337–349.CrossRefGoogle Scholar
  45. 45.
    Iavarone, A. T.; Paech, K.; Williams, E. R. Effects of Charge State and Cationizing Agent on the Electron Capture Dissociation of a Peptide. Anal. Chem 2004, 76, 2231–2238.CrossRefGoogle Scholar
  46. 46.
    Oh, H. B.; Lin, C.; Hwang, H. Y.; Zhai, H. L.; Breuker, K.; Zabrouskov, V.; Carpenter, B. K.; McLafferty, F. W. Infrared Photodissociation Spectroscopy of Electrosprayed Ions in a Fourier Transform Mass Spectrometer. J. Am. Chem. Soc 2005, 127, 4076–4083.CrossRefGoogle Scholar
  47. 47.
    Syrstad, E. A.; Stephens, D. D.; Turecek, F. Hydrogen Atom Adducts to the Amide Bond: Generation and Energetics of Amide Radicals in the Gas Phase. J. Phys. Chem. A 2003, 107, 115–126.CrossRefGoogle Scholar
  48. 48.
    Patriksson, A.; Adams, C.; Kjeldsen, F.; Raber, J.; van der Spoel, D.; Zubarev, R. A. Prediction of N-Cα Bond Cleavage Frequencies in Electron Capture Dissociation of Trp-Cage Dications by Force-Field Molecular Dynamics Simulations. Int. J. Mass Spectrom 2006, 248, 124–135.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  • Cheng Lin
    • 1
  • Jason J. Cournoyer
    • 2
  • Peter B. O’Connor
    • 1
  1. 1.Mass Spectrometry Resource, Department of BiochemistryBoston University School of MedicineBostonUSA
  2. 2.Department of ChemistryBoston UniversityBostonUSA

Personalised recommendations