Journal of the American Society for Mass Spectrometry

, Volume 17, Issue 9, pp 1315–1321

Structures of α-type ions formed in the 157 nm photodissociation of singly-charged peptide ions

  • Liangyi Zhang
  • Weidong Cui
  • Matthew S. Thompson
  • James P. Reilly
Application Note


One hundred fifty-seven nm photodissociation of singly-charged peptide ions induces the cleavage of α-carbon to carbonyl-carbon bonds along the backbone. an + 1 radical ions are observed as the primary photolysis products of peptides with N-terminal arginines in a linear ion trap mass spectrometer. The radical elimination pathways undertaken by the an + 1 radical ions to form more stable even-electron species are studied in hydrogen-deuterium (H/D) exchange experiments. Two types of an ions along with d-type ions are observed as secondary elimination products. The relative abundance of each depends on the C-terminal residue of the radical fragment ion.


  1. 1.
    Thompson, M. S.; Cui, W.; Reilly, J. P. Fragmentation of Singly Charged Peptide Ions by Photodissociation at Lambda = 157 nm. Angew. Chem. Int. Ed. 2004, 43, 4791–4794.Google Scholar
  2. 2.
    Cui, W.; Thompson, M. S.; Reilly, J. P. Pathways of Peptide ion Fragmentation Induced by Vacuum Ultraviolet Light. J. Am. Soc. Mass Spectrom. 2005, 16, 1384–1398.CrossRefGoogle Scholar
  3. 3.
    Harrison, A. G. The Gas-Phase Basicities and Proton Affinities of Amino Acids and Peptides. Mass Spectrom. Rev. 1997, 16, 201–217.CrossRefGoogle Scholar
  4. 4.
    Kim, T. Y.; Thompson, M. S.; Reilly, J. P. Peptide Photodissociation at 157 nm in a Linear Ion Trap Mass Spectrometer. Rapid Commun. Mass Spectrom. 2005, 19, 1657–1665.CrossRefGoogle Scholar
  5. 5.
    Liere, P.; Steiner, V.; Jennings, K. R.; March, R. E.; Tabet, J. C. Influence of Ion Activation and Thermalization Effects on Reaction Rate Constants in a Quadrupole Ion Trap Mass Spectrometer. Int. J. Mass Spectrom. 1997, 167, 735–751.CrossRefGoogle Scholar
  6. 6.
    Biemann, K. Contributions of Mass Spectrometry to Peptide and Protein Structure. Biomed. Environ. Mass Spectrom. 1988, 16, 99–111.CrossRefGoogle Scholar
  7. 7.
    Papayannopoulos, I. A. The Interpretation of Collision-Induced Dissociation Tandem Mass-Spectrometry of Peptides. Mass Spectrom. Rev. 1995, 14, 49–73.CrossRefGoogle Scholar
  8. 8.
    Biemann, K. Nomenclature for Peptide Fragment Ions (Positive Ions). Methods Enzymol. 1990, 193, 886–887.CrossRefGoogle Scholar
  9. 9.
    Johnson, R. S.; Martin, S. A.; Biemann, K. Collision-Induced Fragmentation of (M + H)+ Ions of Peptides Side-Chain Specific Sequence Ions. Int. J. Mass Spectrom. Ion Processes 1988, 86, 137–154.CrossRefGoogle Scholar
  10. 10.
    Spengler, B.; Kirsch, D.; Kaufmann, R. Metastable Decay of Peptides and Proteins in Matrix-Assisted Laser-Desorption Mass Spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 198–202.CrossRefGoogle Scholar
  11. 11.
    Spengler, B.; Kirsch, D.; Kaufmann, R. Fundamental-Aspects of Postsource Decay in Matrix-Assisted Laser Desorption Mass-Spectrometry. I. Residual Gas Effects. J. Phys. Chem. 1992, 96, 9678–9684.CrossRefGoogle Scholar
  12. 12.
    Katta, V.; Chait, B. T. Conformational -Changes in Proteins Probed by Hydrogen-Exchange Electrospray-Ionization Mass-Spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 214–217.CrossRefGoogle Scholar
  13. 13.
    Winger, B. E.; Lightwahl, K. J.; Rockwood, A. L.; Smith, R. D. Probing Qualitative Conformation Differences of Multiply Protonated Gas-Phase Proteins Via H/D Isotope Exchange with D2O. J. Am. Chem. Soc. 1992, 114, 5897–5898.CrossRefGoogle Scholar
  14. 14.
    Schnier, P. D.; Price, W. D.; Jockusch, R. A.; Williams, E. R. Blackbody Infrared Radiative Dissociation of Bradykinin and Its Analogues: Energetics, Dynamics, and Evidence for Salt-Bridge Structures in the Gas Phase. J. Am. Chem. Soc. 1996, 118, 7178–7189.CrossRefGoogle Scholar
  15. 15.
    Wyttenbach, T.; Paizs, B.; Barran, P.; Breci, L.; Liu, D.; Suhai, S.; Wysocki, V. H.; Bowers, M. T. The Effect of the Initial Water of Hydration on the Energetics, Structures, and H/D Exchange Mechanism of a Family of Pentapeptides: An Experimental and Theoretical Study. J. Am. Chem. Soc. 2003, 125, 13768–13775.CrossRefGoogle Scholar
  16. 16.
    Gu, C.; Somogyi, A.; Wysocki, V. H.; Medzihradszky, K. F. Fragmentation of Protonated Oligopeptides XLDVLQ (X=L, H, K, or R) by Surface Induced Dissociation: Additional Evidence for the “Mobile Proton” Model. Anal. Chim. Acta. 1999, 397, 247–256CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  • Liangyi Zhang
    • 1
  • Weidong Cui
    • 1
  • Matthew S. Thompson
    • 1
  • James P. Reilly
    • 1
  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations