Identification and characterization of EX1 kinetics in H/D exchange mass spectrometry by peak width analysis

  • David D. Weis
  • Thomas E. Wales
  • John R. Engen
  • Matthew Hotchko
  • Lynn F. Ten Eyck
Focus: Hydrogen Exchange And Covalent Modification


Proteins that undergo cooperative unfolding events display EX1 kinetic signatures in hydrogen exchange mass spectra. The hallmark bimodal isotope pattern observed for EX1 kinetics is distinct from the binomial isotope pattern for uncorrelated exchange (EX2), the normal exchange regime for folded proteins. Detection and characterization of EX1 kinetics is simple when the cooperative unit is large enough that the isotopic envelopes in the bimodal pattern are resolved in the m/z scale but become complicated in cases where the unit is small or there is a mixture of EX1 and EX2 kinetics. Here we describe a data interpretation method involving peak width analysis that makes characterization of EX1 kinetics simple and rapid. The theoretical basis for EX1 and EX2 isotopic signatures and the effects each have on peak width are described. Modeling of EX2 widening and analysis of empirical data for proteins and peptides containing purely EX2 kinetics showed that the amount of widening attributable to stochastic forward- and back exchange in a typical experiment is small and can be quantified. Proteins and peptides with both obvious and less obvious EX1 kinetics were analyzed with the peak width method. Such analyses provide the half-life for the cooperative unfolding event and the relative number of residues involved. Automated analysis of peak width was performed with custom Excel macros and the DEX software package. Peak width analysis is robust, capable of automation, and provides quick interpretation of the key information contained in EX1 kinetic events.


  1. 1.
    Miranker, A.; Robinson, C. V.; Radford, S. E.; Aplin, R. T.; Dobson, C. M. Detection of transient protein folding populations by mass spectrometry. Science 1993, 262, 896–900.CrossRefGoogle Scholar
  2. 2.
    Engen, J. R.; Smith, D. L. Investigating the higher order structure of proteins: Hydrogen exchange, proteolytic fragmentation and mass spectrometry. Methods Mol. Biol. 2000, 146, 95–112.Google Scholar
  3. 3.
    Arrington, C. B.; Teesch, L. M.; Robertson, A. D. Defining protein ensembles with native-state NH exchange: Kinetics of interconversion and cooperative units from combined NMR and MS analysis. J. Mol. Biol. 1999, 285, 1265–1275.CrossRefGoogle Scholar
  4. 4.
    Englander, S. W.; Kallenbach, N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q. Rev. Biophys. 1984, 16, 521–655.CrossRefGoogle Scholar
  5. 5.
    Englander, S. W. Protein folding intermediates and pathways studied by hydrogen exchange. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 213–238.CrossRefGoogle Scholar
  6. 6.
    Sivaraman, T.; Robertson, A. D. Kinetics of conformational fluctuations by EX1 hydrogen exchange in native proteins. Methods Mol. Biol. 2001, 168, 193–214.Google Scholar
  7. 7.
    Hoofnagle, A. N.; Resing, K. A.; Ahn, N. G. Protein analysis by hydrogen exchange mass spectrometry. Annu. Rev. Biophys. Biomol. Struct. 2003, 32, 1–25.CrossRefGoogle Scholar
  8. 8.
    Wales, T. E.; Engen, J. R. Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom. Rev. 2006, 25, 158–170.CrossRefGoogle Scholar
  9. 9.
    Kaltashov, I. A.; Eyles, S. J. Studies of biomolecular conformations and conformational dynamics by mass spectrometry. Mass Spectrom. Rev. 2002, 21, 37–71.CrossRefGoogle Scholar
  10. 10.
    Arrington, C. B.; Robertson, A. D. Kinetics and thermodynamics of conformational equilibria in native proteins by hydrogen exchange. Methods Enzymol. 2000, 323, 104–124.CrossRefGoogle Scholar
  11. 11.
    Ferraro, D. M.; Lazo, N. D.; Robertson, A. D. EX1 hydrogen exchange and protein folding. Biochemistry 2004, 43, 587–594.CrossRefGoogle Scholar
  12. 12.
    Roder, H.; Wagner, G.; Wuthrich, K. Amide proton exchange in proteins by EX1 kinetics: Studies of the basic pancreatic trypsin inhibitor at variable pH 2 and temperature. Biochemistry 1985, 24, 7396–7407.CrossRefGoogle Scholar
  13. 13.
    Houliston, R. S.; Liu, C.; Singh, L. M.; Meiering, E. M. pH and urea dependence of amide hydrogen-deuterium exchange rates in the β-trefoil protein hisactophilin. Biochemistry 2002, 41, 1182–1194.CrossRefGoogle Scholar
  14. 14.
    Maier, C. S.; Schimerlik, M. I.; Deinzer, M. L. Thermal denaturation of Escherichia coli thioredoxin studied by hydrogen/deuterium exchange and electrospray ionization mass spectrometry: Monitoring a 2-state protein unfolding transition. Biochemistry 1999, 38, 1136–1143.CrossRefGoogle Scholar
  15. 15.
    Arrington, C. B.; Robertson, A. D. Microsecond to minute dynamics revealed by EX1-type hydrogen exchange at nearly every backbone hydrogen bond in a native protein. J. Mol. Biol. 2000, 296, 1307–1317.CrossRefGoogle Scholar
  16. 16.
    Wales, T. E.; Engen, J. R. Partial unfolding of diverse SH3 domains on a wide time scale. J. Mol. Biol. 2006, 357, 1592–1604.CrossRefGoogle Scholar
  17. 17.
    Xiao, H.; Hoerner, J. K.; Eyles, S. J.; Dobo, A.; Voigtman, E.; Mel’cuk, A. I.; Kaltashov, I. A. Mapping protein energy landscapes with amide hydrogen exchange and mass spectrometry: I: A generalized model for a 2-state protein and comparison with experiment. Protein Sci. 2005, 14, 543–557.CrossRefGoogle Scholar
  18. 18.
    Hotchko, M.; Anand, G. S.; Komives, E. A.; Ten Eyck, L. F. Automated extraction of backbone deuteration levels from amide H/(2)H mass spectrometry experiments. Protein Sci. 2006, 15, 583–601.CrossRefGoogle Scholar
  19. 19.
    Weis, D. D.; Kjellen, P.; Sefton, B. M.; Engen, J. R. Altered dynamics in Lck SH3 upon binding to the LBD1 domain of Herpesvirus saimiri tip; unpublished.Google Scholar
  20. 20.
    Wu, Y.; Kaveti, S.; Engen, J. R. Extensive deuterium back-exchange in certain immobilized pepsin columns used for H/D exchange mass spectrometry. Anal. Chem. 2006, 78, 1719–1723.CrossRefGoogle Scholar
  21. 21.
    Zhang, Z.; Smith, D. L. Determination of amide hydrogen exchange by mass spectrometry: A new tool for protein structure elucidation. Protein Sci. 1993, 2, 522–531.CrossRefGoogle Scholar
  22. 22.
    Carter, J. M.; Gurevich, V. V.; Prossnitz, E. R.; Engen, J. R. Conformational differences between arrestin2 and preactivated mutants as revealed by hydrogen exchange mass spectrometry. J. Mol. Biol. 2005, 351, 865–878.CrossRefGoogle Scholar
  23. 23.
    Fu, C. Y.; Prevelige, P. E. Jr. Dynamic motions of free and bound O29 scaffolding protein identified by hydrogen deuterium exchange mass spectrometry. Protein Sci 2006; in pressGoogle Scholar
  24. 24.
    Hochrein, J. M.; Lerner, E. C.; Schiavone, A. P.; Smithgall, T. E.; Engen, J. R. An examination of dynamics crosstalk between SH2 and SH3 domains by hydrogen/deuterium exchange and mass spectrometry. Protein Sci. 2006, 15, 65–73.CrossRefGoogle Scholar
  25. 25.
    Gmeiner, W. H.; Xu, I.; Horita, D. A.; Smithgall, T. E.; Engen, J. R.; Smith, D. L.; Byrd, R. A. Intramolecular binding of a proximal PPII helix to an SH3 domain in the fusion protein SH3Hck:PPIIhGAP. Cell. Biochem. Biophys. 2001, 35, 115–126.CrossRefGoogle Scholar
  26. 26.
    Chung, E. W.; Nettleton, E. J.; Morgan, C. J.; Gross, M.; Miranker, A.; Radford, S. E.; Dobson, C. M.; Robinson, C. V. Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR. Protein Sci. 1997, 6, 1316–1324.CrossRefGoogle Scholar
  27. 27.
    Molday, R. S.; Englander, S. W.; Kallen, R. G. Primary structure effects on peptide group hydrogen exchange. Biochemistry 1972, 11, 150–158.CrossRefGoogle Scholar
  28. 28.
    Bai, Y.; Milne, J. S.; Mayne, L.; Englander, S. W. Primary structure effects on peptide group hydrogen exchange. Proteins: Struct. Funct. Genet. 1993, 17, 75–86.CrossRefGoogle Scholar
  29. 29.
    Connelly, G. P.; Bai, Y.; Jeng, M.-F.; Englander, S. W. Isotope effects in peptide group hydrogen exchange. Proteins: Struct. Funct. Genet. 1993, 17, 87–92.CrossRefGoogle Scholar
  30. 30.
    Engen, J. R.; Smithgall, T. E.; Gmeiner, W. H.; Smith, D. L. Identification and localization of slow, natural, cooperative unfolding in the hematopoietic cell kinase SH3 domain by amide hydrogen exchange and mass spectrometry. Biochemistry 1997, 36, 14384–14391.CrossRefGoogle Scholar
  31. 31.
    Smith, D. L.; Deng, Y.; Zhang, Z. Probing the noncovalent structure of proteins by amide hydrogen exchange and mass spectrometry. J. Mass. Spectrom. 1997, 32, 135–146.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  • David D. Weis
    • 1
  • Thomas E. Wales
    • 1
  • John R. Engen
    • 1
  • Matthew Hotchko
    • 2
  • Lynn F. Ten Eyck
    • 2
  1. 1.Department of ChemistryUniversity of New MexicoAlbuquerqueUSA
  2. 2.Department of Chemistry and Biochemistry and San Diego Supercomputer CenterUniversity of California-San DiegoLa JollaUSA

Personalised recommendations