Journal of The American Society for Mass Spectrometry

, Volume 17, Issue 9, pp 1229–1238 | Cite as

Thermal decomposition of multiply charged T-rich oligonucleotide anions in the gas phase. Influence of internal solvation on the arrhenius parameters for neutral base loss

  • Rambod Daneshfar
  • John S. Klassen


Arrhenius activation parameters (E a , A) for the loss of neutral nucleobases from a series of T-rich, doubly and triply deprotonated 15-and 20-mer oligodeoxynucleotides (ODN) containing a single reactive base (X = A or C) with the sequence, XT14, XT19 and T19X, have been determined using the blackbody infrared radiative dissociation technique. The A-containing anions are significantly more reactive (≥3000 times) than the C-containing ions over the temperature range investigated. Importantly, the Arrhenius parameters for the loss of AH exhibit a strong dependence on size of the ODN and, to some extent, the charge state; the Arrhenius parameters increase with size and charge (E a = 29–39 kcal mol−1, A=1015–1020 s−1). In contrast, the parameters for the loss of CH are much less sensitive to size (E a =35–39 kcal mol−1, A=1014–1017 s−1). The results are consistent with a greater contribution from the internal solvation of the reactive base to the Arrhenius parameters for the loss of A, compared with C, from the 15-and 20-mers. To further probe differences in internal solvation of A and C, hydrogen/deuterium exchange was carried out on AT 19 −3 , T19A−3, CT 19 −3 and T19C−3 using D2O as the exchange reagent. However, the H/D exchange results did not reveal any differences in internal solvation within the ODN anions. Arrhenius parameters for the dissociation of noncovalent complexes of T 20 −3 and the neutral nucleobase AH or CH have also been determined. Differences in the parameters indicate differences in the nature of the intermolecular interactions. It is proposed that neutral A-T interactions (i.e., base-base), which originate in solution, dominate in the case of (T20+AH)−3, while charge solvation, involving CH and a deprotonated phosphate group, is present for (T20+CH)−3.


  1. 1.
    Hofstadler, S. A.; Sannes-Lowry, K. A.; Hannis, J. C. Analysis of Nucleic Acids by FTICR MS. Mass Spectrom. Rev. 2005, 24, 265–285.CrossRefGoogle Scholar
  2. 2.
    McLuckey, S. A.; Van Berkel, G. J.; Glish, G. L. Tandem Mass spectrometry of Small, Multiply Charged Oligonucleotides. J. Am. Soc. Mass Spectrom. 1992, 3, 60–70.CrossRefGoogle Scholar
  3. 3.
    Wan, K. X.; Gross, M. L. Fragmentation Mechanisms of Oligodeoxynucleotides: Effects of Replacing Phosphates with Methylphosphates and Thymines with Other Bases in T-Rich Sequences. J. Am. Soc. Mass Spectrom. 2001, 12, 580–589.CrossRefGoogle Scholar
  4. 4.
    Wan, K. X.; Gross, J.; Hillenkamp, F.; Gross, M. L. Fragmentation Mechanisms of Oligodeoxynucleotides Studies by H/D Exchange and Electrospray Ionization Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 193–205.CrossRefGoogle Scholar
  5. 5.
    McLuckey, S. A.; Habibi-Goudarzi, S. Decompositions of Multiply Charged Oligonucleotide Anions. J. Am. Chem. Soc. 1993, 115, 12085–12095.CrossRefGoogle Scholar
  6. 6.
    Freitas, M. A.; Shi, S. D.-H.; Hendrickson, C. L.; Marshall, A. G. Gas-phase RNA and DNA Ions. 1. H/D Exchange of the [M-H] Anions of Nucleoside 5′-Monophosphates (GMP, dGMP, AMP, dAMP, CMP, dCMP, UMP, dTMP), Ribose 5-Monophosphate, and 2-Deoxyribose 5-Monophosphate with D2O and D2S. J. Am. Chem. Soc. 1998, 120, 10187–10193.CrossRefGoogle Scholar
  7. 7.
    McLuckey, S. A.; Vaidyanathan, G. Charge State Effects in the Decompositions of Single-Nucleobase Oligonucleotide Polyanions. Int. J. Mass Spectrom. Ion Processes. 1997, 162, 1–16.CrossRefGoogle Scholar
  8. 8.
    Little, D. P.; Aaserud, D. J.; Valaskovic, G. A.; McLafferty, F. W. Sequence Information from 42–108-mer DNAs (Complete for a 50-mer) by Tandem Mass Spectrometry. J. Am. Chem. Soc. 1996, 118, 9352–9359.CrossRefGoogle Scholar
  9. 9.
    Luo, H.; Lipton, M. S.; Smith, R. D. Charge Effects for Differentiation of Oligodeoxynucleotide Isomers Containing 8-oxo-dG Residues. J. Am. Soc. Mass Spectrom. 2002, 13, 195–199.CrossRefGoogle Scholar
  10. 10.
    Hannis, J. C.; Muddiman, D. C. Tailoring the Gas-Phase Dissociation and Determining the Relative Energy of Activation for Dissociation of 7-deaza Purine Modified Oligonucleotides Containing a Repeating Motif. Int. J. Mass Spectrom. 2002, 219, 139–150.CrossRefGoogle Scholar
  11. 11.
    Zhu, L.; Parr, G. R.; Fitzgerald, M. C.; Nelson, C. M.; Smith, L. M. Oligodeoxynucleotide Fragmentation in MALDI/TOF Mass Spectrometry Using 355-nm Radiation. J. Am. Chem. Soc. 1995, 117, 6048–6056.CrossRefGoogle Scholar
  12. 12.
    McLuckey, S. A.; Vaidyanathan, G.; Habibi-Goudarzi, S. Charged vs. Neutral Nucleobase Loss from Multiply Charged Oligonucleotide Anions. J. Mass Spectrom. 1995, 30, 1222–1229.CrossRefGoogle Scholar
  13. 13.
    Aaserud, D. J.; Guan, Z.; Little, D. P.; McLafferty, F. W. DNA Sequencing with Blackbody Infrared Radiative Dissociation of Electrosprayed Ions. Int. J. Mass Spectrom. Ion Processes. 1997, 167/168, 705–7012.CrossRefGoogle Scholar
  14. 14.
    Klassen, J. S.; Schnier, P. D.; Williams, E. R. Blackbody Infrared Radiative Dissociation of Oligonucleotide Anions. J. Am. Soc. Mass Spectrom. 1998, 9, 1117–1124.CrossRefGoogle Scholar
  15. 15.
    Lotz, R.; Gerster, M.; Bayer, E. Sequence Verification of Oligodeoxynucleotides and Oligophosphorothioates Using Electrospray Ionization (Tandem) Mass Spectrometry. Rapid Commun. Mass Spectrom. 1998, 12, 389–397.CrossRefGoogle Scholar
  16. 16.
    Wang, Z.; Wan, K. X.; Ramanathan, R.; Taylor, J. S.; Gross, M. L. Structure and Fragmentation Mechanisms of Isomeric T-Rich Oligodeoxynucleotides: A Comparison of Four Tandem Mass Spectrometric Methods. J. Am. Soc. Mass Spectrom. 1998, 9, 683–691.CrossRefGoogle Scholar
  17. 17.
    Daneshfar, R.; Klassen, J. S. Arrhenius Activation Parameters for the Loss of Neutral Nucleobases from Deprotonated Oligonucleotide Anions in the Gas Phase. J. Am. Soc. Mass Spectrom. 2004, 15, 55–64.CrossRefGoogle Scholar
  18. 18.
    Felitsyn, N.; Kitova, E. N.; Klassen, J. S. Thermal Decomposition of a Gaseous Multiprotein Complex Studied by Blackbody Infrared Radiative Dissociation. Investigating the Origin of the Asymmetric Dissociation Behavior. Anal. Chem. 2001, 73, 4647–4661.CrossRefGoogle Scholar
  19. 19.
    Marshall, A. G.; Grosshans, P. B. Fourier-Transform Ion Cyclotron Resonance Mass spectrometry—the Teenage Years. Anal. Chem. 1991, 63, 215A-229A.CrossRefGoogle Scholar
  20. 20.
    Benson, S. W. Thermochemical Kinetics. Methods for the Estimation of Thermochemical data and Rate Parameters; Wiley: New York, 1968; pp 78–140.Google Scholar
  21. 21.
    Kitova, E. N.; Bundle, D. R.; Klassen, J. S. Thermal Dissociation of Protein-Oligosaccharide Complexes in the Gas Phase: Mapping the Intrinsic Intermolecular Interactions. J. Am. Chem. Soc. 2002, 124, 5902–5913.CrossRefGoogle Scholar
  22. 22.
    Wang, W.; Kitova, E. N.; Klassen, J. S. Bioactive Recognition Sites May not be Energetically Preferred in Protein-Carbohydrate Complexes in the Gas Phase. J. Am. Chem. Soc. 2003, 125, 13630–13631.CrossRefGoogle Scholar
  23. 23.
    Kitova, E. N.; Klassen, J. S. Intrinsic Energy-Entropy Compensation in Gaseous Biomolecular Complexes. Proceedings of the 53rd ASMS Conference on Mass Spectrometry and Allied Topics; San Antonio, TX, June, 2005.Google Scholar
  24. 24.
    Laskin, J.; Futrell, J. H. Entropy is the Major Driving Force for Fragmentation of Proteins and Protein-Ligand Complexes in the Gas Phase. J. Phys. Chem. A. 2003, 107, 5836–5839.CrossRefGoogle Scholar
  25. 25.
    Dunitz, J. D. Win Some, Lose Some: Enthalpy-Entropy Compensation in weak Intermolecular Interactions. Chem. Biol. 1995, 2, 709–712.CrossRefGoogle Scholar
  26. 26.
    Hoaglund, C. S.; Liu, Y.; Ellington, A. D.; Pagel, M.; Clemmer, D. E. Gas-Phase DNA: Oligothymidine Ion Conformers. J. Am. Chem. Soc. 1997, 119, 9051–9052.CrossRefGoogle Scholar
  27. 27.
    Lindahl, T.; Karlstrom, O. Heat-Induced Depyrimidination of Deoxyribonucleic Acid in Neutral Solution. Biochemistry. 1973, 12, 5151–5154.CrossRefGoogle Scholar
  28. 28.
    Lindahl, T.; Nyberg, B. Rate of Depurination of Native Deoxyribonucleic Acid. Biochemistry. 1972, 11, 3610–3618.CrossRefGoogle Scholar
  29. 29.
    Shapiro, R.; Danzig, M. Acidic Hydrolysis of Deoxycytidine and Deoxyuridine Derivatives. The General Mechanism of Deoxyribonucleoside Hydrolysis. Biochemistry. 1972, 11, 23–29.CrossRefGoogle Scholar
  30. 30.
    Winger, B. E.; Light-Wahl, K. J.; Rockwood, A. L.; Smith, R. D. Probing Qualitative Conformation Differences of Multiply Protonated Gas-Phase Proteins via H/D Isotopic Exchange with D2O. J. Am. Chem. Soc. 1992, 114, 5897–5898.CrossRefGoogle Scholar
  31. 31.
    Suckau, D.; Shi, Y.; Beu, S. C.; Senko, M. W.; Quinn, J. P.; Wampler, F. M.; McLafferty, F. W. Coexisting Stable Conformations of Gaseous Protein Ions. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 790–793.CrossRefGoogle Scholar
  32. 32.
    Campbell, S.; Rodgers, M. T.; Marzulff, E. M.; Beauchamp, J. L. Deuterium Exchange Reactions as a Probe of Biomolecule Structure. Fundamental Studies of Gas Phase H/D Exchange Reactions of Protonated Glycine Oligomers with D2O, CD3OD, CD3CO2D, and ND3. J. Am. Chem. Soc. 1995, 117, 12840–12854.CrossRefGoogle Scholar
  33. 33.
    Griffey, R. H.; Greig, M. J.; Robinson, J. M.; Laude, D. A. Gas-Phase Hydrogen-Deuterium Exchange in Phosphorothioate d(GTCAG) and d(TCGAT). Rapid Commun. Mass Spectrom. 1999, 13, 113–117.CrossRefGoogle Scholar
  34. 34.
    Robinson, J. M.; Greig, M. J.; Griffey, R. H.; Mohan, V.; Laude, D. A. Hydrogen/Deuterium Exchange of Nucleotides in the Gas Phase. Anal. Chem. 1998, 70, 3566–3571.CrossRefGoogle Scholar
  35. 35.
    Habibi-Goudarzi, S.; McLuckey, S. A. Ion Trap Collisional Activation of the Deprotonated Deoxymononucleoside and Deoxydinucleoside Monophosphates. J. Am. Soc. Mass Spectrom. 1995, 6, 102–113.CrossRefGoogle Scholar
  36. 36.
    Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. Gas-Phase Ion and Neutral Thermochemistry. J. Phys. Chem. Ref. Data. 1988, 17, S1-S861(Suppl. 1).Google Scholar
  37. 37.
    Strittmatter, E. F.; Schnier, P. D.; Klassen, J. S.; Williams, E. R. Dissociation Energies of Deoxyribose Nucleotide Dimer Anions Measured Using Blackbody Infrared Radiative Dissociation. J. Am. Soc. Mass Spectrom. 1999, 10, 1095–1104.CrossRefGoogle Scholar
  38. 38.
    Monajjemi, M.; Chahkandi, B. Theoretical Investigation of Hydrogen Bonding in Watson-Crick, Hoogestein, and Their Reversed and Other Models: Comparison and Analysis for Configurations of Adenine-Thymine Base Pairs in 9 Models. THEOCHEM J. Mol. Struct. 2005, 714, 43–60.CrossRefGoogle Scholar
  39. 39.
    Wang, K.; Schall, O. F.; Gokel, G. W. Detection of Hydrogen-Bonded Adenine-Thymine Base-Pair Complexes by Electrospray Mass Spectrometry. Supramol. Chem. 1996, 9, 85–90.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations