Journal of the American Society for Mass Spectrometry

, Volume 17, Issue 9, pp 1229–1238 | Cite as

Thermal decomposition of multiply charged T-rich oligonucleotide anions in the gas phase. Influence of internal solvation on the arrhenius parameters for neutral base loss

Articles

Abstract

Arrhenius activation parameters (Ea, A) for the loss of neutral nucleobases from a series of T-rich, doubly and triply deprotonated 15-and 20-mer oligodeoxynucleotides (ODN) containing a single reactive base (X = A or C) with the sequence, XT14, XT19 and T19X, have been determined using the blackbody infrared radiative dissociation technique. The A-containing anions are significantly more reactive (≥3000 times) than the C-containing ions over the temperature range investigated. Importantly, the Arrhenius parameters for the loss of AH exhibit a strong dependence on size of the ODN and, to some extent, the charge state; the Arrhenius parameters increase with size and charge (Ea = 29–39 kcal mol−1, A=1015–1020 s−1). In contrast, the parameters for the loss of CH are much less sensitive to size (Ea=35–39 kcal mol−1, A=1014–1017 s−1). The results are consistent with a greater contribution from the internal solvation of the reactive base to the Arrhenius parameters for the loss of A, compared with C, from the 15-and 20-mers. To further probe differences in internal solvation of A and C, hydrogen/deuterium exchange was carried out on AT19−3, T19A−3, CT19−3 and T19C−3 using D2O as the exchange reagent. However, the H/D exchange results did not reveal any differences in internal solvation within the ODN anions. Arrhenius parameters for the dissociation of noncovalent complexes of T20−3 and the neutral nucleobase AH or CH have also been determined. Differences in the parameters indicate differences in the nature of the intermolecular interactions. It is proposed that neutral A-T interactions (i.e., base-base), which originate in solution, dominate in the case of (T20+AH)−3, while charge solvation, involving CH and a deprotonated phosphate group, is present for (T20+CH)−3.

References

  1. 1.
    Hofstadler, S. A.; Sannes-Lowry, K. A.; Hannis, J. C. Analysis of Nucleic Acids by FTICR MS. Mass Spectrom. Rev. 2005, 24, 265–285.CrossRefGoogle Scholar
  2. 2.
    McLuckey, S. A.; Van Berkel, G. J.; Glish, G. L. Tandem Mass spectrometry of Small, Multiply Charged Oligonucleotides. J. Am. Soc. Mass Spectrom. 1992, 3, 60–70.CrossRefGoogle Scholar
  3. 3.
    Wan, K. X.; Gross, M. L. Fragmentation Mechanisms of Oligodeoxynucleotides: Effects of Replacing Phosphates with Methylphosphates and Thymines with Other Bases in T-Rich Sequences. J. Am. Soc. Mass Spectrom. 2001, 12, 580–589.CrossRefGoogle Scholar
  4. 4.
    Wan, K. X.; Gross, J.; Hillenkamp, F.; Gross, M. L. Fragmentation Mechanisms of Oligodeoxynucleotides Studies by H/D Exchange and Electrospray Ionization Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 193–205.CrossRefGoogle Scholar
  5. 5.
    McLuckey, S. A.; Habibi-Goudarzi, S. Decompositions of Multiply Charged Oligonucleotide Anions. J. Am. Chem. Soc. 1993, 115, 12085–12095.CrossRefGoogle Scholar
  6. 6.
    Freitas, M. A.; Shi, S. D.-H.; Hendrickson, C. L.; Marshall, A. G. Gas-phase RNA and DNA Ions. 1. H/D Exchange of the [M-H] Anions of Nucleoside 5′-Monophosphates (GMP, dGMP, AMP, dAMP, CMP, dCMP, UMP, dTMP), Ribose 5-Monophosphate, and 2-Deoxyribose 5-Monophosphate with D2O and D2S. J. Am. Chem. Soc. 1998, 120, 10187–10193.CrossRefGoogle Scholar
  7. 7.
    McLuckey, S. A.; Vaidyanathan, G. Charge State Effects in the Decompositions of Single-Nucleobase Oligonucleotide Polyanions. Int. J. Mass Spectrom. Ion Processes. 1997, 162, 1–16.CrossRefGoogle Scholar
  8. 8.
    Little, D. P.; Aaserud, D. J.; Valaskovic, G. A.; McLafferty, F. W. Sequence Information from 42–108-mer DNAs (Complete for a 50-mer) by Tandem Mass Spectrometry. J. Am. Chem. Soc. 1996, 118, 9352–9359.CrossRefGoogle Scholar
  9. 9.
    Luo, H.; Lipton, M. S.; Smith, R. D. Charge Effects for Differentiation of Oligodeoxynucleotide Isomers Containing 8-oxo-dG Residues. J. Am. Soc. Mass Spectrom. 2002, 13, 195–199.CrossRefGoogle Scholar
  10. 10.
    Hannis, J. C.; Muddiman, D. C. Tailoring the Gas-Phase Dissociation and Determining the Relative Energy of Activation for Dissociation of 7-deaza Purine Modified Oligonucleotides Containing a Repeating Motif. Int. J. Mass Spectrom. 2002, 219, 139–150.CrossRefGoogle Scholar
  11. 11.
    Zhu, L.; Parr, G. R.; Fitzgerald, M. C.; Nelson, C. M.; Smith, L. M. Oligodeoxynucleotide Fragmentation in MALDI/TOF Mass Spectrometry Using 355-nm Radiation. J. Am. Chem. Soc. 1995, 117, 6048–6056.CrossRefGoogle Scholar
  12. 12.
    McLuckey, S. A.; Vaidyanathan, G.; Habibi-Goudarzi, S. Charged vs. Neutral Nucleobase Loss from Multiply Charged Oligonucleotide Anions. J. Mass Spectrom. 1995, 30, 1222–1229.CrossRefGoogle Scholar
  13. 13.
    Aaserud, D. J.; Guan, Z.; Little, D. P.; McLafferty, F. W. DNA Sequencing with Blackbody Infrared Radiative Dissociation of Electrosprayed Ions. Int. J. Mass Spectrom. Ion Processes. 1997, 167/168, 705–7012.CrossRefGoogle Scholar
  14. 14.
    Klassen, J. S.; Schnier, P. D.; Williams, E. R. Blackbody Infrared Radiative Dissociation of Oligonucleotide Anions. J. Am. Soc. Mass Spectrom. 1998, 9, 1117–1124.CrossRefGoogle Scholar
  15. 15.
    Lotz, R.; Gerster, M.; Bayer, E. Sequence Verification of Oligodeoxynucleotides and Oligophosphorothioates Using Electrospray Ionization (Tandem) Mass Spectrometry. Rapid Commun. Mass Spectrom. 1998, 12, 389–397.CrossRefGoogle Scholar
  16. 16.
    Wang, Z.; Wan, K. X.; Ramanathan, R.; Taylor, J. S.; Gross, M. L. Structure and Fragmentation Mechanisms of Isomeric T-Rich Oligodeoxynucleotides: A Comparison of Four Tandem Mass Spectrometric Methods. J. Am. Soc. Mass Spectrom. 1998, 9, 683–691.CrossRefGoogle Scholar
  17. 17.
    Daneshfar, R.; Klassen, J. S. Arrhenius Activation Parameters for the Loss of Neutral Nucleobases from Deprotonated Oligonucleotide Anions in the Gas Phase. J. Am. Soc. Mass Spectrom. 2004, 15, 55–64.CrossRefGoogle Scholar
  18. 18.
    Felitsyn, N.; Kitova, E. N.; Klassen, J. S. Thermal Decomposition of a Gaseous Multiprotein Complex Studied by Blackbody Infrared Radiative Dissociation. Investigating the Origin of the Asymmetric Dissociation Behavior. Anal. Chem. 2001, 73, 4647–4661.CrossRefGoogle Scholar
  19. 19.
    Marshall, A. G.; Grosshans, P. B. Fourier-Transform Ion Cyclotron Resonance Mass spectrometry—the Teenage Years. Anal. Chem. 1991, 63, 215A-229A.CrossRefGoogle Scholar
  20. 20.
    Benson, S. W. Thermochemical Kinetics. Methods for the Estimation of Thermochemical data and Rate Parameters; Wiley: New York, 1968; pp 78–140.Google Scholar
  21. 21.
    Kitova, E. N.; Bundle, D. R.; Klassen, J. S. Thermal Dissociation of Protein-Oligosaccharide Complexes in the Gas Phase: Mapping the Intrinsic Intermolecular Interactions. J. Am. Chem. Soc. 2002, 124, 5902–5913.CrossRefGoogle Scholar
  22. 22.
    Wang, W.; Kitova, E. N.; Klassen, J. S. Bioactive Recognition Sites May not be Energetically Preferred in Protein-Carbohydrate Complexes in the Gas Phase. J. Am. Chem. Soc. 2003, 125, 13630–13631.CrossRefGoogle Scholar
  23. 23.
    Kitova, E. N.; Klassen, J. S. Intrinsic Energy-Entropy Compensation in Gaseous Biomolecular Complexes. Proceedings of the 53rd ASMS Conference on Mass Spectrometry and Allied Topics; San Antonio, TX, June, 2005.Google Scholar
  24. 24.
    Laskin, J.; Futrell, J. H. Entropy is the Major Driving Force for Fragmentation of Proteins and Protein-Ligand Complexes in the Gas Phase. J. Phys. Chem. A. 2003, 107, 5836–5839.CrossRefGoogle Scholar
  25. 25.
    Dunitz, J. D. Win Some, Lose Some: Enthalpy-Entropy Compensation in weak Intermolecular Interactions. Chem. Biol. 1995, 2, 709–712.CrossRefGoogle Scholar
  26. 26.
    Hoaglund, C. S.; Liu, Y.; Ellington, A. D.; Pagel, M.; Clemmer, D. E. Gas-Phase DNA: Oligothymidine Ion Conformers. J. Am. Chem. Soc. 1997, 119, 9051–9052.CrossRefGoogle Scholar
  27. 27.
    Lindahl, T.; Karlstrom, O. Heat-Induced Depyrimidination of Deoxyribonucleic Acid in Neutral Solution. Biochemistry. 1973, 12, 5151–5154.CrossRefGoogle Scholar
  28. 28.
    Lindahl, T.; Nyberg, B. Rate of Depurination of Native Deoxyribonucleic Acid. Biochemistry. 1972, 11, 3610–3618.CrossRefGoogle Scholar
  29. 29.
    Shapiro, R.; Danzig, M. Acidic Hydrolysis of Deoxycytidine and Deoxyuridine Derivatives. The General Mechanism of Deoxyribonucleoside Hydrolysis. Biochemistry. 1972, 11, 23–29.CrossRefGoogle Scholar
  30. 30.
    Winger, B. E.; Light-Wahl, K. J.; Rockwood, A. L.; Smith, R. D. Probing Qualitative Conformation Differences of Multiply Protonated Gas-Phase Proteins via H/D Isotopic Exchange with D2O. J. Am. Chem. Soc. 1992, 114, 5897–5898.CrossRefGoogle Scholar
  31. 31.
    Suckau, D.; Shi, Y.; Beu, S. C.; Senko, M. W.; Quinn, J. P.; Wampler, F. M.; McLafferty, F. W. Coexisting Stable Conformations of Gaseous Protein Ions. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 790–793.CrossRefGoogle Scholar
  32. 32.
    Campbell, S.; Rodgers, M. T.; Marzulff, E. M.; Beauchamp, J. L. Deuterium Exchange Reactions as a Probe of Biomolecule Structure. Fundamental Studies of Gas Phase H/D Exchange Reactions of Protonated Glycine Oligomers with D2O, CD3OD, CD3CO2D, and ND3. J. Am. Chem. Soc. 1995, 117, 12840–12854.CrossRefGoogle Scholar
  33. 33.
    Griffey, R. H.; Greig, M. J.; Robinson, J. M.; Laude, D. A. Gas-Phase Hydrogen-Deuterium Exchange in Phosphorothioate d(GTCAG) and d(TCGAT). Rapid Commun. Mass Spectrom. 1999, 13, 113–117.CrossRefGoogle Scholar
  34. 34.
    Robinson, J. M.; Greig, M. J.; Griffey, R. H.; Mohan, V.; Laude, D. A. Hydrogen/Deuterium Exchange of Nucleotides in the Gas Phase. Anal. Chem. 1998, 70, 3566–3571.CrossRefGoogle Scholar
  35. 35.
    Habibi-Goudarzi, S.; McLuckey, S. A. Ion Trap Collisional Activation of the Deprotonated Deoxymononucleoside and Deoxydinucleoside Monophosphates. J. Am. Soc. Mass Spectrom. 1995, 6, 102–113.CrossRefGoogle Scholar
  36. 36.
    Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. Gas-Phase Ion and Neutral Thermochemistry. J. Phys. Chem. Ref. Data. 1988, 17, S1-S861(Suppl. 1).Google Scholar
  37. 37.
    Strittmatter, E. F.; Schnier, P. D.; Klassen, J. S.; Williams, E. R. Dissociation Energies of Deoxyribose Nucleotide Dimer Anions Measured Using Blackbody Infrared Radiative Dissociation. J. Am. Soc. Mass Spectrom. 1999, 10, 1095–1104.CrossRefGoogle Scholar
  38. 38.
    Monajjemi, M.; Chahkandi, B. Theoretical Investigation of Hydrogen Bonding in Watson-Crick, Hoogestein, and Their Reversed and Other Models: Comparison and Analysis for Configurations of Adenine-Thymine Base Pairs in 9 Models. THEOCHEM J. Mol. Struct. 2005, 714, 43–60.CrossRefGoogle Scholar
  39. 39.
    Wang, K.; Schall, O. F.; Gokel, G. W. Detection of Hydrogen-Bonded Adenine-Thymine Base-Pair Complexes by Electrospray Mass Spectrometry. Supramol. Chem. 1996, 9, 85–90.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations