Differentiation of 2′-O- and 3′-O-methylated Ribonucleosides by tandem mass spectrometry

Short Communication


Recent studies revealed that the 3′-terminal nucleotides in plant microRNAs were methylated on the ribose at the 2′ or 3′ hydroxyl groups. Here we examined the fragmentation of the electrospray-produced [M+H]+ and [M-H] ions of 2′- and 3′-O-methylated ribonucleosides. It turned out that the predominant fragmentation pathway for the [M+H]+ ions of ribose-methylated nucleosides was the neutral loss of the methylated ribose, which made it impossible to distinguish 2′-O-methylation from 3′-O-methylation by positive-ion MS/MS. However, characteristic fragment ions, resulting from the cleavage through the ribose rings, were produced for the [M-H] ions of each pair of ribose-methylated nucleosides. In this respect, the neutral loss of a 90-Da fragment (C3H6O3) was observed for 2′-O-methylated cytidine, guanosine and adenosine, but not for their 3′-O-methylated counterparts. On the other hand, the neutral loss of a 60-Da fragment (C2H4O2) was found for 3′-O-methyluridine, but not for 2′-O-methyluridine.


  1. 1.
    Bartel, D. P. MicroRNAs Genomics, Biogenesis, Mechanism, and Function. Cell. 2004, 116, 281.CrossRefGoogle Scholar
  2. 2.
    Limbach, P. A.; Crain, P. F.; McCloskey, J. A. Summary: The Modified Nucleosides of RNA. Nucleic Acids Res. 1994, 22, 2183–2196.CrossRefGoogle Scholar
  3. 3.
    Rozenski, J.; Crain, P. F.; McCloskey, J. A. The RNA Modification Database: 1999 Update. Nucleic Acids Res. 1999, 27, 196–197.CrossRefGoogle Scholar
  4. 4.
    Dunin-Horkawicz, S.; Czerwoniec, A.; Gajda, M. J.; Feder, M.; Grosjean, H.; Bujnicki, J. M. MODOMICS: A Database of RNA Modification Pathways. Nucleic Acids Res. 2006, 34, D145-D149.CrossRefGoogle Scholar
  5. 5.
    Boutet, S. V. F.; Liu, J.; Beclin, C.; Fagard, M.; Gratias, A.; Morel, J.; Crete, P.; Chen, X.; Vaucheret, H. Arabidopsis HEN1: A Genetic Link Between Endogenous miRNA Controlling Development and siRNA Controlling Transgene Silencing and Virus Resistance. Curr. Biol. 2003, 13, 843–858.CrossRefGoogle Scholar
  6. 6.
    Yu, B.; Yang, Z.; Li, J.; Minakhina, S.; Yang, M.; Padgett, R. W.; Steward, R.; Chen, X. Methylation as a Crucial Step in Plant microRNA Biogenesis. Science. 2005, 307, 932–935.CrossRefGoogle Scholar
  7. 7.
    Li, J.; Yang, Z.; Yu, B.; Liu, J.; Chen, X. Methylation Protects miRNAs and siRNAs from a 3′-end Uridylation Activity in Arabidopsis. Curr. Biol. 2005, 15, 1501–1507.CrossRefGoogle Scholar
  8. 8.
    Ebhardt, H. A.; Thi, E. P.; Wang, M.-B.; Unrau, P. J. Extensive 3′ Modification of Plant Small RNAs is Modulated by Helper Component-Proteinase Expression. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 13398–13403.CrossRefGoogle Scholar
  9. 9.
    Kaufmann, G.; Kallenbach, N. R. Determination of Recognition Sites of T4 RNA Ligase on the 3′-OH and 5′-P Termini of Polyribonucleotide Chains. Nature. 1975, 254, 452.CrossRefGoogle Scholar
  10. 10.
    Silber, R.; Malathi, V. G.; Hurwitz, J. Purification and Properties of Bacteriophage T4-Induced RNA Ligase. Proc. Natl. Acad. Sci. U.S.A. 1972, 69, 3009–3013.CrossRefGoogle Scholar
  11. 11.
    Walker, G. C.; Uhlenbeck, O. C.; Bedows, E.; Gumport, R. I. T4-Induced RNA Ligase Joins Single-Stranded Oligoribonucleotides. Proc. Natl. Acad. Sci. U.S.A. 1975, 72, 122–126.CrossRefGoogle Scholar
  12. 12.
    Howlett, H. A.; Johnson, M. W.; Trim, A. R.; Eagles, J.; Self, R. Mass Spectral Analysis of Modified Ribonucleosides Obtained by Degradation of 14 Alkali-Stable Dinucleotides Isolated from Yeast Ribonucleic acid. Anal. Biochem. 1971, 39, 429–440.CrossRefGoogle Scholar
  13. 13.
    McCloskey, J. A. In Basic Principles in Nucleic Acid Chemistry, Vol. 1. Ts’o P.O.P. Ed., New York: Academic Press, 1974, pp 209–309.CrossRefGoogle Scholar
  14. 14.
    Shaw, S. J.; Desiderio, D. M.; Tsuboyama, K.; McCloskey, J. M. Mass Spectrometry of Nucleic Acid Components. Analogs of Adenosine. J. Am. Chem. Soc. 1970, 92, 2510–2522.CrossRefGoogle Scholar
  15. 15.
    Crow, F. W.; Tomer, K. B.; Gross, M. L.; McCloskey, J. A.; Bergstrom, D. E. Fast Atom Bombardment Combined with Tandem Mass Spectrometry for the Determination of Nucleosides. Anal. Biochem. 1984, 139, 243–262.CrossRefGoogle Scholar
  16. 16.
    McCrery, D. A.; Gross, M. L. Laser Desorption/Fourier-Transform Mass Spectrometry for the Study of Nucleosides, Oligosaccharides, and Glycosides. Anal. Chim. Acta. 1985, 178, 91–103.CrossRefGoogle Scholar
  17. 17.
    Nelson, C. C.; McCloskey, J. A. Collision-Induced Dissociation of Uracil and Its Derivatives. J. Am. Soc. Mass Spectrom. 1994, 5, 339–349.CrossRefGoogle Scholar
  18. 18.
    Frelon, S.; Douki, T.; Ravanat, J.-L.; Pouget, J.-P.; Tornabene, C.; Cadet, J. High-Performance Liquid Chromatography-Tandem Mass Spectrometry Measurement of Radiation-Induced Base Damage to Isolated and Cellular DNA. Chem. Res. Toxicol. 2000, 13, 1002–1010.CrossRefGoogle Scholar
  19. 19.
    Hua, Y.; Wainhaus, S. B.; Yang, Y.; Shen, L.; Xiong, Y.; Xu, X.; Zhang, F.; Bolton, J. L.; van Breemen, R. B. Comparison of Negative and Positive Ion Electrospray Tandem Mass Spectrometry for the Liquid Chromatography Tandem Mass Spectrometry Analysis of Oxidized Deoxynucleosides. J. Am. Soc. Mass Spectrom. 2001, 12, 80–87.CrossRefGoogle Scholar
  20. 20.
    Wang, Y.; Vivekananda, S.; Zhang, K. ESI-MS/MS for the Differentiation of Diastereomeric Pyrimidine Glycols in Mononucleosides. Anal. Chem. 2002, 74, 4505–4512.CrossRefGoogle Scholar
  21. 21.
    McCloskey, J. A. Structural Characterization of Natural Nucleosides by Mass Spectrometry. Acc. Chem. Res. 1991, 24, 81–88.CrossRefGoogle Scholar
  22. 22.
    Smith, D. L.; Schram, K. H.; McCloskey, J. A. The Negative Ion Mass Spectra of Selected Nucleosides. Biomed. Mass Spectrom. 1983, 10, 269–275.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  1. 1.Department of Chemistry-027University of California at RiversideRiversideUSA

Personalised recommendations