Enhanced desorption ionization using oxidizing electrosprays

Short Communication


A signal enhancement of two orders of magnitude was achieved when reactive desorption electrospray ionization (DESI) was used to investigate copper(II) dibutyl dithiocarbamate, Cu(II)(bu2dtc)2, found in a specialized polymer. Cu(II) was oxidized to Cu(III) during the DESI experiment by oxidants in the spray solvent. Such oxidants could be present or formed during electrospray (e.g., O2) or deliberately added to the spray solvent (this approach is called reactive DESI). When a strong oxidizing agent (e.g., iodine) was added to the spray solvent, the signal increased by two orders of magnitude relative to the pure solvent spray. The correlation between the standard reduction potential of the oxidant and the signal intensity and signal to noise ratio of the product ion for various reagents, was tested and discussed. The observed DESI enhancements in rates of oxidation are not observed in homogeneous solution. The major peaks in the collision induced dissociation (CID) spectrum of the complex ion Cu(III)(bu2dtc)2]+ were identified using isotopic distributions and MS3 data.

Supplementary material

13361_2011_170801091_MOESM1_ESM.doc (44 kb)
Supplementary material, approximately 46 KB.


  1. 1.
    Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Mass Spectrometry Sampling under Ambient Conditions with Desorption Electrospray Ionization. Science. 2004, 306, 471–473.CrossRefGoogle Scholar
  2. 2.
    Takats, Z.; Wiseman, J. M.; Cooks, R. G. Ambient Mass Spectrometry Using Desorption Electrospray Ionization (DESI): Instrumentation, Mechanisms, and Applications in Forensics, Chemistry, and Biology. J. Mass Spectrom. 2005, 40, 1261–1275.CrossRefGoogle Scholar
  3. 3.
    Chen, H.; Talaty, N. N.; Takats, Z.; Cooks, R. G. Desorption Electrospray Ionization Mass Spectrometry for High-Throughput Analysis of Pharmaceutical Samples in the Ambient Environment. Anal. Chem. 2005, 77, 6915–6927.CrossRefGoogle Scholar
  4. 4.
    Williams, J. P.; Scrivens, J. H. Rapid Accurate Mass Desorption Electrospray Ionization Tandem Mass Spectrometry of Pharmaceutical Samples. Rapid Commun. Mass Spectrom. 2005, 19, 3643–3650.CrossRefGoogle Scholar
  5. 5.
    Kauppila, T. J.; Wiseman, J. M.; Ketola, R. A.; Kotiaho, T.; Cooks, R. G.; Kostiainen, R. Desorption Electrospray Ionization Mass Spectrometry for the Analysis of Pharmaceuticals and Metabolites. Rapid Commun. Mass Spectrom. 2006, 20, 387–392.CrossRefGoogle Scholar
  6. 6.
    Talaty, N. N.; Chen, H.; Takats, Z.; Cooks, R. G. Desorption Electrospray Ionization (DESI) of Natural Products for Alkaloid Detection in Plant Tissue and High Throughput Analysis of Pharmaceutical Samples. Analyst. 2005, 130, 1624–1633.CrossRefGoogle Scholar
  7. 7.
    Chen, H.; Pan, Z.; Talaty, N. N.; Cooks, R. G.; Raftery, D.; Combining Desorption Electrospray Ionization Mass Spectrometry and Nuclear Magnetic Resonance for Differential Metabolomics without Sample Separation. Rapid Commun. Mass Spectrom; 2005, in press.Google Scholar
  8. 8.
    Cotte-Rodriguez, I.; Takats, Z.; Talaty, N. N.; Chen, H.; Cooks, R. G. Desorption Electrospray Ionization of Explosives on Surfaces: Sensitivity and Selectivity Enhancement by Reactive Desorption Electrospray Ionization. Anal. Chem. 2005, 77, 6755–6764.CrossRefGoogle Scholar
  9. 9.
    Van Berkel, G. J.; Ford, M. J.; Deibel, M. A. Thin-Layer Chromatography and Mass Spectrometry Coupled Using Desorption Electrospray Ionization. Anal. Chem. 2005, 77, 1207–1215.CrossRefGoogle Scholar
  10. 10.
    Nefliu, M.; Venter, M.; Cooks, R. G. Desorption Electrospray Ionization and Electrosonic Spray Ionization for Solid- and Solution-Phase Analysis of Industrial Polymers. Chem. Commun. 2006, 8, 888–890.CrossRefGoogle Scholar
  11. 11.
    Chen, H.; Cotte-Rodriguez, I.; Cooks, R. G. Cis-Diol Functional Group Recognition by Reactive Desorption Electrospray Ionization (DESI). Chem. Commun. 2006, 6, 597–599.CrossRefGoogle Scholar
  12. 12.
    Blades, A. T.; Ikonomou, M. G.; Kebarle, P. Mechanism of Electrospray Mass Spectrometry. Electrospray as an Electrolysis Cell. Anal. Chem. 1991, 63, 2109–2114.CrossRefGoogle Scholar
  13. 13.
    Van Berkel, G. J.; McLuckey, S. A.; Glish, G. L. Electrochemical Origin of Radical Cations Observed in Electrospray Ionization Mass Spectra. Anal. Chem. 1992, 64, 1586–1593.CrossRefGoogle Scholar
  14. 14.
    Moore, C.; McKeown, P. LCMS/MS and TOF-SIMS Identification of the Color Bodies on the Surface of a Polymer. J. Am. Soc. Mass Spectrom. 2005, 16, 295–301.CrossRefGoogle Scholar
  15. 15.
    de la Mora, J. F.; Van Berkel, G. J.; Enke, C. G.; Cole, R. B.; Martinez-Sanchez, M.; Fenn, J. B. Electrochemical Processes in Electrospray Mass Spectrometry. J. Mass Spectrom. 2000, 35, 939–952.CrossRefGoogle Scholar
  16. 16.
    Gun, J.; Modestov, A.; Rinaldo, P.; Ovadia, L. Reduction of (C5Me5)2Mo2O5] and (C5Me5)2Mo2O4] in Methanol/Water Trifluoroacetate Solutions Investigated by Combined On-Line Electrochemistry-Ionization Mass Spectrometry. Eur. J. Inorg. Chem. 2003, 12, 2264–2272.CrossRefGoogle Scholar
  17. 17.
    Van Berkel, G. J. Electrolytic Deposition of Metals on to the High-Voltage Contact in an Electrospray Emitter: Implications for Gas-Phase Ion Formation. J. Mass Spectrom. 2000, 35, 773–783.CrossRefGoogle Scholar
  18. 18.
    Van Berkel, G. J.; McLuckey, S. A.; Glish, G. L. Electrospray Ionization of Porphyrins Using a Quadrupole Ion Trap for Mass Analysis. Anal. Chem. 1991, 63, 1098–1109.CrossRefGoogle Scholar
  19. 19.
    Xu, X.; Nolan, S. P.; Cole, R. B. Electrochemical Oxidation and Nucleophilic Addition Reactions of Metallocenes in Electrospray Mass Spectrometry. Anal. Chem. 1994, 66, 119–125.CrossRefGoogle Scholar
  20. 20.
    Bond, A. M.; Colton, R.; D’Agostino, A.; Harvey, J.; Traeger, J. C. Electrospray Mass Spectrometric Study of the Nature and Liability of Cationic Complexes Generated by the Reaction of Solutions of Neutral Iron(III), Cobalt(III), Nickel(II), and Copper(II) Dithiocarbamates with Nitrosonium Tetrafluoroborate. Inorg. Chem. 1993, 32, 3952–3956.CrossRefGoogle Scholar
  21. 21.
    Schoener, D. F.; Olsen, M. A.; Cummings, P. G.; Basic, C. Electrospray Ionization of Neutral Metal Dithiocarbamate Complexes Using In-Source Oxidation. J. Mass Spectrom. 1999, 34, 1069–1078.CrossRefGoogle Scholar
  22. 22.
    Bard A. J. Electrochemical Methods: Fundamentals and Applications; John Wiley and Sons Inc.: New York, 2001; pp 178–180.Google Scholar
  23. 23.
    Peover, M. E.; White, B. S. Electrolytic Reduction of Oxygen in Aprotic Solvents: The Superoxide Ion. Electrochim. Acta. 1996, 11, 1061–1067.CrossRefGoogle Scholar
  24. 24.
    Brodsky, A. E.; Gordienko, L. L.; Degtiarev, L. S. Cathodic Reduction of Some Aromatic Compounds to Free Anion-Radicals. Electrochim. Acta. 1968, 13, 1095–1100.CrossRefGoogle Scholar
  25. 25.
    Peover, M. E. A Polarographic Investigation into the Redox Behavior of Quinones: The Roles of Electron Affinity and Solvent. J. Chem. Soc. 1962, 4540–4549.Google Scholar
  26. 26.
    Milazzo, G.; Caroli S. Tables of Standard Electrode Potentials; Wiley and Sons: New York, 1978.Google Scholar
  27. 27.
    Louris, J. N.; Cooks, R. G.; Syka, J. E. P.; Kelley, P. E.; Stafford, J. G. C.; Todd, J. F. J. Instrumentation, Applications, and Energy Deposition in Quadrupole Ion-Trap Tandem Mass Spectrometry. Anal. Chem. 1987, 59, 1677–1685.CrossRefGoogle Scholar
  28. 28.
    Cooks, R. G.; Glish, G. L.; Kaiser, J. R. E.; McLuckey, S. A. Ion Trap Mass Spectrometry. Chem. Eng. News. 1991, 69, 26–41.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest Lafayette
  2. 2.Chemtura CorporationMiddleburyUSA

Personalised recommendations