De novo peptide sequencing using exhaustive enumeration of peptide composition

  • Matthew T. Olson
  • Jonathan A. Epstein
  • Alfred L. Yergey


We introduce the use of a peptide composition lookup table indexed by residual mass and number of amino acids for de novo sequencing of polypeptides. Polypeptides of 1600 Daltons (Da) or more can be sequenced effectively through exhaustive compositional analysis of MS/MS spectra obtained by unimolecular decomposition (without CID) in a MALDI TOF/TOF despite a fragment mass accuracy of 50 mDa. Peaks are referenced against the lookup table to obtain a complete profile of amino acid combinations, and combinations are assembled into series of increasing length. Concatenating the differences between successive entries in compositional series yields peptide sequences that can be scored and ranked according to signal intensity. While the current work involves measurements acquired on MALDI TOF-TOF, such general treatment of the data anticipates extension to other types of mass analyzers.

Supplementary material

13361_2011_170801041_MOESM1_ESM.pdf (3.1 mb)
Supplementary material, approximately 3252 KB.


  1. 1.
    Eng, J.; McCormack, A.; Yates, J. III. An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database. J. Am. Soc. Mass Spectrom. 1994, 5, 976–989.CrossRefGoogle Scholar
  2. 2.
    Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S. Probability-Based Protein Identification by Searching Sequence Databases Using Mass Spectrometry Data. Electrophoresis 1999, 20, 3551–3567.CrossRefGoogle Scholar
  3. 3.
    Geer, L. Y.; Markey, S. P.; Kowalak, J. A.; Wagner, L.; Xu, M.; Maynard, D. M.; Yang, X.; Shi, W.; Bryant, S. H. Open Mass Spectrometry Search Algorithm. J. Proteome Res. 2004, 3, 958–964.CrossRefGoogle Scholar
  4. 4.
    Steen, H.; Mann, M. The ABC’s (and XYZ’s) of Peptide Sequencing. Nat. Rev. Mol. Cell. Biol. 2004, 5, 699–711.CrossRefGoogle Scholar
  5. 5.
    Yergey, A. L.; Coorssen, J. R.; Backlund, P. S.; Blank, P. S.; Humphrey, G. A.; Zimmerberg, J.; Campbell, J. M.; Vestal, M. L. De Novo Sequencing of Peptides Using MALDI/TOF-TOF. J. Am. Soc. Mass Spectrom. 2002, 10, 784–791.CrossRefGoogle Scholar
  6. 6.
    Koy, C.; Mikkat, S.; Raptakis, E.; Sutton, C.; Resch, M.; Tanaka, K.; Glocker, M. O Matrix-Assisted Laser. Desorption/Ionization-Quadrupole Ion Trap-Time of Flight Mass Spectrometry Sequencing Resolves Structures of Unidentified Peptides Obtained by In-Gel Tryptic Digestion of Haptoglobin Derivatives from Human Plasma Proteomes. Proteomics 2003, 3, 851–858.CrossRefGoogle Scholar
  7. 7.
    Yew, J. Y.; Dikler, S.; Stretton, A. O. De Novo Sequencing of Novel Neuropeptides Directly from Ascaris Suum Tissue Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight/Time-of-Flight. Rapid Commun. Mass Spectrom. 2003, 17, 2693–2698.CrossRefGoogle Scholar
  8. 8.
    Hanada, K.-I.; Yewdell, J. W.; Yang, J. C. Immune Recognition of a Human Renal Cancer Antigen Through Post-Translational Protein Splicing. Nature 2004, 427, 252–256.CrossRefGoogle Scholar
  9. 9.
    Shui, W.; Liu, Y.; Bao, H.; Liang, S.; Yang, P.; Chen, X. Enhancing TOF/TOF-based De Novo Sequencing Capability for High Throughput Protein Identification with Amino Acid-Coded Mass Tagging. J. Proteome Res. 2005, 4(1), 83–90.CrossRefGoogle Scholar
  10. 10.
    Dancik, V.; Addona, T. A.; Clauser, K. R.; Vath, J. E.; Pevzner, P. A. De Novo Peptide Sequencing via Tandem Mass Spectrometry. J. Comput. Biol. 1999, 6(3/4), 327–342.CrossRefGoogle Scholar
  11. 11.
    Zhang, Z.; McElavin, J. S. De Novo Peptide Sequencing by Two-Dimensional Fragment Correlation Mass Spectrometry. Anal. Chem. 2000, 72, 2337–2350.CrossRefGoogle Scholar
  12. 12.
    Chen, T.; Kao, M.-Y.; Tepel, M.; Rush, J.; Church, G. A Dynamic Programming Approach to de Novo Peptide Sequencing via Tandem Mass Spectrometry. J. Comput. Biol 2001, 8(3), 325–337.CrossRefGoogle Scholar
  13. 13.
    Taylor, J. A.; Johnson, R. S. Implementation and Uses of Automated de Novo Peptide Sequencing by Tandem Mass Spectrometry. Anal. Chem. 2001, 73, 2594–2604.CrossRefGoogle Scholar
  14. 14.
    Ma, B.; Zhang, K.; Hendrie, C.; Liang, C.; Li, M.; Doherty-Kirby, A.; Lajoie, G. PEAKS: Powerful Software for Peptide de Novo Sequencing by Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 2337–2342.CrossRefGoogle Scholar
  15. 15.
    Spengler, B. De Novo Sequencing, Peptide Composition Analysis, and Composition-Based Sequencing: A New Strategy Employing Accurate Mass Determination by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 703–714.CrossRefGoogle Scholar
  16. 16.
    Zhang, Z. De Novo Peptide Sequencing Based on a Divide and Conquer Algorithm and Peptide Tandem Spectrum Simulation. Anal. Chem. 2004, 76, 6374–6383.CrossRefGoogle Scholar
  17. 17.
    Raucci, G.; Gabrielli, M.; Novelli, S.; Picariello, G.; Collins, S. H. CHASE, a Charge-Assisted Sequencing Algorithm for Automated Homology-Based Protein Identifications with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Post-Source Decay Fragmentation Data. J. Mass Spectrom. 2005, 40, 475–488.CrossRefGoogle Scholar
  18. 18.
    PRG2005 De Novo Peptide Sequencing Results.; 2005.Google Scholar
  19. 19.
    Kapp, E. A.; Schutz, F.; Reid, G. E.; Eddes, J. S.; Moritz, R. L.; O’Hair, R. A.; Speed, T. P.; Simpson, R. J. Mining a Tandem Mass Spectrometry Database to Determine the Trends and Global Factors Influencing Peptide Fragmentation. Anal. Chem. 2003, 75, 6251–6264.CrossRefGoogle Scholar
  20. 20.
    Medzihradszky, K.; Campbell, J.; Baldwin, M.; Juhasz, P.; Vestal, M.; Burlingame, A. The Characteristics of peptide Collision-Induced Dissociation Using a High-Performance MALDI-TOF/TOF Tandem Mass Spectrometer. Anal. Chem. 2000, 72, 552–558.CrossRefGoogle Scholar
  21. 21.
    Olson, M.; Bostic, K.; Seltzer, M. Proceedings of the Summer Usenix Technical Conference; Monterey, CA, June, 1999.Google Scholar
  22. 22.
    http://biowulf.nih.govGoogle Scholar
  23. 23.
    Epstein, J. A.; Olson, M. T.; Yergey, A. L., unpublished.Google Scholar
  24. 24.
    Spengler, B.; Lutzenkirchen, F.; Metzger, S.; Chaurand, P.; Kaufmann, R.; Jeffery, W.; Bartlet-Jones, M.; Pappin, D. Peptide Sequencing of Charged Derivatives by Postsource Decay MALDI Mass Spectrometry. Int. J. Mass Spectrom. Ion Porcesses. 1997, 169/170, 127–140.CrossRefGoogle Scholar
  25. 25.
    Adamczyk, M.; Gebler, J. C.; Wu, J. Charge Derivitization of Peptides to Simplify Their Sequencing with an Ion Trap Mass Spectrometer. Rapid Commun. Mass Spectrom. 1999, 13, 1413–1422.CrossRefGoogle Scholar
  26. 26.
    Keough, T.; Lacey, M.; Youngquist, R. Solid-Phase Derivatization of Tryptic Peptides for Rapid Protein Identification by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2002, 16, 1003–1015.CrossRefGoogle Scholar
  27. 27.
    Marekov, L. N.; Steinert, P. M. Charge Derivatization by 4-Sulfophenyl Isothiocyanate Enhances Peptide Sequencing by Post-Source Decay Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. J. Mass Spectrom. 2003, 38, 373–377.CrossRefGoogle Scholar
  28. 28.
    Booth, S. A.; Hohnholt, S. G.; Papayannopoulos, I. A. Sequence Determination of Glutathione S-Transferase from Horse by MALDI Tandem Time-of-Flight Mass Spectrometry; 52nd ASMS Conference on Mass Spectrometry and Allied Topics; Nashville, TN, May, 2004.Google Scholar
  29. 29.
    Differential Mapping of Serum Fractions Using iTRAQ TM Reagents and LC-MS/MS on the 4800 MALDI TOF/TOF TM Analyzer.; 2005.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  • Matthew T. Olson
    • 1
  • Jonathan A. Epstein
    • 2
  • Alfred L. Yergey
    • 1
  1. 1.Laboratory of Cellular and Molecular BiophysicsNICHD, NIHBethesdaUSA
  2. 2.Unit of Biologic ComputationOSD, NICHD, NIHBethesdaUSA
  3. 3.NIHBethesdaUSA

Personalised recommendations