Dynamic range of mass accuracy in LTQ orbitrap hybrid mass spectrometer

  • Alexander Makarov
  • Eduard Denisov
  • Oliver Lange
  • Stevan Horning


Using a novel orbitrap mass spectrometer, the authors investigate the dynamic range over which accurate masses can be determined (extent of mass accuracy) for short duration experiments typical for LC/MS. A linear ion trap is used to selectively fill an intermediate ion storage device (C-trap) with ions of interest, following which the ensemble of ions is injected into an orbitrap mass analyzer and analyzed using image current detection and fast Fourier transformation. Using this technique, it is possible to generate ion populations with intraspectrum intensity ranges up to 104. All measurements (including ion accumulation and image current detection) were performed in less than 1 s at a resolving power of 30,000. It was shown that 5-ppm mass accuracy of the orbitrap mass analyzer is reached with >95% probability at a dynamic range of more than 5000, which is at least an order of magnitude higher than typical values for time-of-flight instruments. Due to the high resolving power of the orbitrap, accurate mass of an ion could be determined when the signal was reliably distinguished from noise (S/N p-p >2…3).


  1. 1.
    Blom, K. F. Estimating the precision of exact mass measurements on an orthogonal time-of-flight mass spectrometer. Anal. Chem. 2001, 73, 715–719.CrossRefGoogle Scholar
  2. 2.
    Wu, J.; McAllister, H. Exact mass measurement on an electrospray ionization time-of-flight mass spectrometer: Error distribution and selective averaging. J. Mass Spectrom. 2003, 38, 1043–1053.CrossRefGoogle Scholar
  3. 3.
    Colombo, M.; Sirtori, F. R.; Rizzo, V. A fully automated method for accurate mass determination using high-performance liquid chromatography with a quadrupole/orthogonal acceleration time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 2004, 18, 511–517.CrossRefGoogle Scholar
  4. 4.
    Fjeldsted, J. Time-of-Flight Mass Spectrometry, Technical Overview; Report 5989-0373EN, Agilent Technologies: 2003; ( Scholar
  5. 5.
    Chen, L.; Cottrell, C. E.; Marshall, A. G. Effect of signal-to-noise ratio and number of data points upon precision in measurement of peak amplitude, position, and width in Fourier transform spectrometry. Chemom. Intell. Lab. Syst. 1986, 1, 51–58.CrossRefGoogle Scholar
  6. 6.
    Verdun, F. R.; Giancaspro, C.; Marshall, A. G. Effects of noise, time-domain damping, zero-filling, and the FFT algorithm on the “exact” interpolation of fast Fourier transform spectra. Appl. Spectrosc. 1988, 42, 715–721.CrossRefGoogle Scholar
  7. 7.
    Marshall, A. G.; Verdun, F. R. Fourier Transforms in NMROpticaland Mass Spectrometry; Elsevier: Amsterdam, 1990; 150–155.Google Scholar
  8. 8.
    Limbach, P. A.; Grosshans, P. B.; Marshall, A. G. Experimental determination of the number of trapped ions, detection limit, and dynamic range in Fourier-transform ion-cyclotron resonance mass spectrometry. Anal. Chem. 1993, 65, 135–140.CrossRefGoogle Scholar
  9. 9.
    Easterling, M. L.; Mize, T. H.; Amster, I. J. Routine part-per-million mass accuracy for high-mass ions: Space-charge effects in MALDI FT-ICR. Anal. Chem. 1999, 71, 624–632.CrossRefGoogle Scholar
  10. 10.
    Ledford, E. B.; Rempel, D. L.; Gross, M. L. Space-charge effects in Fourier-transform mass spectrometry-mass calibration. Anal. Chem. 1984, 56, 2744–2748.CrossRefGoogle Scholar
  11. 11.
    Jeffries, J. B.; Barlow, S. E.; Dunn, G. H. Theory of space-charge shift of ion-cyclotron resonance frequencies. Int. J. Mass Spectrom. Ion Processes 1983, 54, 169–187.CrossRefGoogle Scholar
  12. 12.
    Brown, C. E.; Smith, M. J. The present status and prospects for Fourier transform-ion cyclotron resonance/mass spectrometry. Spectrosc. World 1990, 1, 25–30.Google Scholar
  13. 13.
    Masselon, C.; Tolmachev, A. V.; Anderson, G. A.; Harkewicz, R.; Smith, R. D. Mass measurement errors caused by “local” frequency perturbations in FTICR mass spectrometry. J. Am. Soc. Mass Spectrom. 2002, 13, 99–106.CrossRefGoogle Scholar
  14. 14.
    Syka, J. E. P.; Marto, J. A.; Bai, D. L.; Horning, S.; Senko, M. W.; Schwartz, J. C.; Ueberheide, B.; Garcia, B.; Busby, S.; Muratore, T.; Shabanowitz, J.; Hunt, D. F. Novel linear quadrupole ion trap/FT mass spectrometer: Performance characterization and use in the comparative analysis of histone H3 post-translational modifications. J. Proteome Res. 2004, 3, 621–626.CrossRefGoogle Scholar
  15. 15.
    Schwartz, J. C.; Senko, M. W.; Syka, J. E. P. A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 2002, 13, 659–669.CrossRefGoogle Scholar
  16. 16.
    Makarov, A. A. Electrostatic axially-harmonic orbital trapping: A novel high-performance technique of mass analysis. Anal. Chem. 2000, 72, 1156–1162.CrossRefGoogle Scholar
  17. 17.
    Olsen, J. V.; de Godoy, L. M.; Li, G.; Macek, B.; Mortensen, P.; Pesch, R.; Makarov, A. A.; Lange, O.; Horning, S.; Mann, M. Parts per million mass accuracy on an orbitrap mass spectrometer via lock-mass injection into a C-trap. Mol. Cell. Proteom. 2005, 4, 2010–2021.CrossRefGoogle Scholar
  18. 18.
    Tang, K.; Page, J. S.; Smith, R. D. Charge competition and the linear dynamic range of detection in electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 1416–1423.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  • Alexander Makarov
    • 1
  • Eduard Denisov
    • 1
  • Oliver Lange
    • 1
  • Stevan Horning
    • 1
  1. 1.Thermo Electron (Bremen) GmbHBremenGermany

Personalised recommendations