Effect of buffer gas on the fluorescence yield of trapped gas-phase ions

Application Note

Abstract

We investigated the dependence of three different gases, helium, argon, and nitrogen, on the fluorescence signal intensity of rhodamine 6G cations in the gas phase. The method is based on laser-induced fluorescence of ions trapped in a Fourier transform ion cyclotron mass spectrometer. We found that the use of helium results in the highest fluorescence signal, while no fluorescence was detected when using argon under the same conditions.

References

  1. 1.
    Dunbar, R. C. BIRD (blackbody infrared radiative dissociation): Evolution, principles, and applications. Mass Spectrom. Rev. 2004, 23, 127–158.CrossRefGoogle Scholar
  2. 2.
    Engen, J. R.; Smith, D. L. Investigating protein structure and dynamics by hydrogen exchange MS. Anal. Chem. 2001, 73, 256A-265A.CrossRefGoogle Scholar
  3. 3.
    Friess, S. D.; Zenobi, R. Protein structure information from mass spectrometry? Selective titration of arginine residues by sulfonates. J. Am. Soc. Mass Spectrom. 2001, 12, 810–818.CrossRefGoogle Scholar
  4. 4.
    Sharp, J. S.; Becker, J. M.; Hettich, R. L. Analysis of protein solvent accessible surfaces by photochemical oxidation and mass spectrometry. Anal. Chem. 2004, 76, 672–683.CrossRefGoogle Scholar
  5. 5.
    Burlingame, A. L.; McCloskey, J. A. Biological Mass Spectrometry; Elsevier: Amsterdam, 1990, p 179.Google Scholar
  6. 6.
    Shelimov, K. B.; Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. Protein structure in vacuo: Gas-phase conformations of BPTI and cytochrome. c. J. Am. Chem. Soc. 1997, 119, 2240–2248.CrossRefGoogle Scholar
  7. 7.
    Danell, A. S.; Parks, J. H. Fraying and electron autodetachment dynamics of trapped gas phase oligonucleotides. J. Am. Soc. Mass Spectrom. 2003, 14, 1330–1339.CrossRefGoogle Scholar
  8. 8.
    Danell, A. S.; Parks, J. H. FRET. Measurements of trapped oligonucleotide duplexes. Int. J. Mass Spectrom. 2003, 229, 35–45.CrossRefGoogle Scholar
  9. 9.
    Khoury, J. T.; Rodriguez-Cruz, S. E.; Parks, J. H. Pulsed fluorescence measurements of trapped molecular ions with zero background detection. J. Am. Soc. Mass Spectrom. 2002, 13, 696–708.CrossRefGoogle Scholar
  10. 10.
    Iavarone, A. T.; Parks, J. H. Conformational change in unsolvated Trp-cage protein probed by fluorescence. J. Am. Chem. Soc. 2005, 127, 8606–8607.CrossRefGoogle Scholar
  11. 11.
    Dashtiev, M.; Azov, V.; Frankevich, V.; Scharfenberg, L.; Zenobi, R. Clear evidence of fluorescence resonance energy transfer in gas-phase ions. J. Am. Soc. Mass Spectrom. 2005, 16, 1481–1487.CrossRefGoogle Scholar
  12. 12.
    Frankevich, V.; Guan, X.; Dashtiev, M.; Zenobi, R. Laser-induced fluorescence of trapped gas-phase molecular ions generated by internal source matrix-assisted laser desorption/ionization in a Fourier transform ion cyclotron resonance mass spectrometer. Eur. J. Mass Spectrom. 2005, 11, 475–482.CrossRefGoogle Scholar
  13. 13.
    Cage, B.; Friedrich, J.; Little, R. B.; Wang, Y. S.; McFarland, M. A.; Hendrickson, C. L.; Dalal, N.; Marshall, A. G. Wavelength resolved laser-induced fluorescence emission of C6F3H3+ trapped in an ion cyclotron resonance cell. Chem. Phys. Lett. 2004, 394, 188–193.CrossRefGoogle Scholar
  14. 14.
    Cage, B.; McFarland, M. A.; Hendrickson, C. L.; Dalal, N. S.; Marshall, A. G. Resolution of individual component fluorescence lifetimes from a mixture of trapped ions by laser-induced fluorescence/ion cyclotron resonance. J. Phys. Chem. A. 2002, 106, 10033–10036.CrossRefGoogle Scholar
  15. 15.
    Friedrich, J.; Fu, J. M.; Hendrickson, C. L.; Marshall, A. G.; Wang, Y. S. Time resolved laser-induced fluorescence of electrosprayed ions confined in a linear quadrupole trap. Rev. Sci. Instrum. 2004, 75, 4511–4515.CrossRefGoogle Scholar
  16. 16.
    Li, G. Z.; Vining, B. A.; Guan, S.; Marshall, A. G. Laser-induced fluorescence of Ba+ ions trapped and mass-selected in a Fourier transform ion cyclotron resonance mass spectrometer. Rapid Commun. Mass Spectrom. 1996, 10, 1850–1854.CrossRefGoogle Scholar
  17. 17.
    Wang, Y.; Hendrickson, C. L.; Marshall, A. G. Direct optical spectroscopy of gas-phase molecular ions trapped and mass-selected by ion cyclotron resonance: Laser-induced fluorescence excitation spectrum of hexafluorobenzene (C6F6+). Chem. Phys. Lett. 2001, 334, 69–75.CrossRefGoogle Scholar
  18. 18.
    Stafford, G. C.; Kelley, P. E.; Syka, J. E. P.; Reynolds, W. E.; Todd, J. F. J. Recent Improvements in and Analytical Applications of Advanced Ion Trap Technology. Int. J. Mass Spectrom. 1984, 60, 85–98.CrossRefGoogle Scholar
  19. 19.
    Guan, S. H.; Kim, H. S.; Marshall, A. G.; Wahl, M. C.; Wood, T. D.; Xiang, X. Shrink-Wrapping an Ion Cloud for High-Performance Fourier-Transform Ion-Cyclotron Resonance Mass-Spectrometry. Chem. Rev. 1994, 94, 2161–2182.CrossRefGoogle Scholar
  20. 20.
    Böttcher, C. J. F.; Bordewijk, P. Theory of Electric Polarization; Elsevier: Amsterdam, 1978.Google Scholar
  21. 21.
    McGlynn, S. P.; Azumi, T.; Kinoshita, M. Molecular Spectroscopy of the Triplet State; Prentice-Hall Inc.: Englewood Cliffs, NJ, 1969; p 40.Google Scholar
  22. 22.
    Valeur, B. Molecular Fluorescence; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2001; p 72.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  1. 1.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland

Personalised recommendations