The influence of sialylation on glycan negative ion dissociation and energetics

  • Jennifer L. Seymour
  • Catherine E. Costello
  • Joseph Zaia
Articles

Abstract

For the analysis of native glycans using tandem mass spectrometry (MS), it is desirable to choose conditions whereby abundances of cross-ring cleavages indicative of branch positions are maximized. Recently, negative ion tandem mass spectrometry has been shown to produce significantly higher abundances of such ions in glycans compared to the positive ion mode. Much of this prior work has concerned fragmentation patterns in asialo glycans. The present work compares the abundances of critical cross-ring cleavage ions using negative mode tandem mass spectrometry for milk oligosaccharides and N-linked glycans. For comparison, product ion formation was studied for deprotonated and nitrated ions formed from asialo glycans and deprotonated ions from sialylated glycans. Breakdown profiles demonstrate clearly that more energy was required to fragment sialylated compounds to the same extent as either their asialo or nitrate adducted counterparts. The extraction of a proton from a ring hydroxyl group during the ionization process may be viewed, qualitatively, as imparting significantly more energy to the ion than would that from a molecule bearing an acidic group, so that acidic glycans are more stable in the gas phase, as the negative charge resides on the carboxyl group. These results have strong practical implications because a major portion of glycans released from mammalian proteins will be sialylated.

References

  1. 1.
    Domon, B.; Costello, C. E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 1988, 5, 397–409.CrossRefGoogle Scholar
  2. 2.
    Gillece-Castro, B. L.; Burlingame, A. L. Oligosaccharide characterization with high-energy collision-induced dissociation mass spectrometry. Methods Enzymol. 1990, 193, 689–712.CrossRefGoogle Scholar
  3. 3.
    Zaia, J. Mass spectrometry of oligosaccharides. Mass Spectrom. Rev. 2004, 23, 161–227.CrossRefGoogle Scholar
  4. 4.
    Mechref, Y.; Novotny, M. V.; Krishnan, C. Structural characterization of oligosaccharides using MALDI-TOF/TOF tandem mass spectrometry. Anal. Chem. 2003, 75, 4895–4903.CrossRefGoogle Scholar
  5. 5.
    Lewandrowski, U.; Resemann, A.; Sickmann, A. Laser-induced dissociation/high-energy collision-induced dissociation fragmentation using MALDI-TOF/TOF-MS instrumentation for the analysis of neutral and acidic oligosaccharides. Anal. Chem. 2005, 77, 3274–3283.CrossRefGoogle Scholar
  6. 6.
    Huberty, M. C.; Vath, J. E.; Yu, W.; Martin, S. A. Site-specific carbohydrate identification in recombinant proteins using MALD-TOF MS. Anal. Chem. 1993, 65, 2791–2800.CrossRefGoogle Scholar
  7. 7.
    Juhasz, P.; Biemann, K. Mass spectrometric molecular-weight determination of highly acidic compounds of biological significance via their complexes with basic polypeptides. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 4333–4337.CrossRefGoogle Scholar
  8. 8.
    Juhasz, P.; Biemann, K. Utility of noncovalent complexes in the matrix-assisted laser desorption ionization mass spectrometry of heparin-derived oligosaccharides. Carbohydr. Res. 1995, 270, 131–147.CrossRefGoogle Scholar
  9. 9.
    Harvey, D. J.; Naven, T. J. P.; Küster, B.; Bateman, R. H.; Green, M. R.; Critchley, G. Comparison of fragmentation modes for the structural determination of complex oligosaccharides ionized by matrix-assisted laser. Rapid Commun. Mass Spectrom. 1995, 9, 1556–1561.CrossRefGoogle Scholar
  10. 10.
    Chai, W.; Piskarev, V.; Lawson, A. M. Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Anal. Chem. 2001, 73, 631–657.CrossRefGoogle Scholar
  11. 11.
    Harvey, D. J. Fragmentation of negative ions from carbohydrates: Part 1. Use of nitrate and other anionic adducts for the production of negative ion electrospray spectra from N-linked carbohydrates. J. Am. Soc. Mass Spectrom. 2005, 16, 622–630.CrossRefGoogle Scholar
  12. 12.
    Michalski, J. C.; Peterkatalinic, J.; Egge, H.; Pazparente, J.; Montreuil, J.; Strecker, G. Behavior of the 2-acetamido-2-deoxy-α-D-glucopyranosyl residue during sequential hydrazinolysis, N-reacetylation, reduction, and methylation of glycoasparagines. Carbohydr. Res. 1984, 134, 177–189.CrossRefGoogle Scholar
  13. 13.
    Egge, H.; Peter-Kalalinic, J.; Hanfland, P. Structure analysis of glycosphingolipids using fast atom bombardment (FAB) techniques. Adv. Exp. Med. Biol. 1984, 174, 55–63.CrossRefGoogle Scholar
  14. 14.
    Bruntz, R.; Dabrowski, U.; Dabrowski, J.; Ebersold, A.; Peter-Katalinic, J.; Egge, H. Fucose-containing oligosaccharides from human milk from a donor of blood group 0 Le(a) nonsecretor. Biol. Chem. Hoppe-Seyler. 1988, 369, 257–273.CrossRefGoogle Scholar
  15. 15.
    Arita, M.; Iwamori, M.; Higuchi, T.; Nagai, Y. Negative ion fast atom bombardment mass spectrometry of gangliosides and asialo gangliosides: A useful method for the structural elucidation of gangliosides and related neutral glycosphingolipids. J. Biochem. (Tokyo). 1983, 94, 249–256.Google Scholar
  16. 16.
    Isobe, R.; Komori, T.; Abe, F.; Yamauchi, T. Evaluation of positive and negative ion fast atom bombardment mass spectrometry for structural investigations on cardenolide-type cardiac glycosides. Biomed. Environ. Mass Spectrom. 1986, 13, 585–594.CrossRefGoogle Scholar
  17. 17.
    Dell, A.; Ballou, C. E. Fast-atom-bombardment, negative-ion mass spectrometry of the mycobacterial O-methyl-D-glucose polysaccharide and lipopolysaccharides. Carbohydr. Res. 1983, 120, 95–111.CrossRefGoogle Scholar
  18. 18.
    Domon, B.; Costello, C. E. Structure elucidation of glycosphingolipids and gangliosides using high-performance tandem mass spectrometry. Biochemistry. 1988, 27, 1534–1543.CrossRefGoogle Scholar
  19. 19.
    Costello, C. E.; Vath, J. E. Tandem mass spectrometry of glycolipids. Methods Enzymol. 1990, 193, 738–768.CrossRefGoogle Scholar
  20. 20.
    Dallinga, J. W.; Heerma, W. Reaction mechanism and fragment ion structure determination of deprotonated small oligosaccharides, studied by negative ion fast atom bombardment (tandem) mass spectrometry. Biol. Mass Spectrom. 1991, 20, 215–231.CrossRefGoogle Scholar
  21. 21.
    Li, D. T.; Her, G. R. Linkage analysis of chromophore-labeled disaccharides and linear oligosaccharides by negative ion fast atom bombardment ionization and collisional-induced dissociation with B/E scanning. Anal. Biochem. 1993, 211, 250–257.CrossRefGoogle Scholar
  22. 22.
    Carroll, J. A.; Ngoka, L.; Beggs, C. G.; Lebrilla, C. B. Liquid secondary ion mass spectrometry/Fourier transform mass spectrometry of oligosaccharide anions. Anal. Chem. 1993, 65, 1582–1587.CrossRefGoogle Scholar
  23. 23.
    Sagi, D.; Peter-Katalinic, J.; Conradt, H. S.; Nimtz, M. Sequencing of tri- and tetraantennary N-glycans containing sialic acid by negative mode ESI QTOF tandem MS. J. Am. Soc. Mass Spectrom. 2002, 13, 1138–1148.CrossRefGoogle Scholar
  24. 24.
    Vakhrushev, S. Y.; Zamfir, A.; Peter-Katalinic, J. 0,2An cross-ring cleavage as a general diagnostic tool for glycan assignment in glycoconjugate mixtures. J. Am. Soc. Mass Spectrom. 2004, 15, 1863–1868.CrossRefGoogle Scholar
  25. 25.
    Karlsson, N. G.; Schulz, B. L.; Packer, N. H. Structural determination of neutral O-linked oligosaccharide alditols by negative ion LC-electrospray-MSn. J. Am. Soc. Mass Spectrom. 2004, 15, 572–659.CrossRefGoogle Scholar
  26. 26.
    Dell, A. F. A. B. Mass spectrometry of carbohydrates. Adv. Carbohydr. Chem. Biochem. 1987, 45, 19–72.CrossRefGoogle Scholar
  27. 27.
    Spengler, B.; Dolce, J. W.; Cotter, R. J. Infrared-laser desorption mass-spectrometry of oligosaccharides—fragmentation mechanisms and isomer analysis. Anal. Chem. 1990, 62, 1731–1737.CrossRefGoogle Scholar
  28. 28.
    Carroll, J.; Willard, D.; Lebrilla, C. Energetics of cross-ring cleavages and their relevance to the linkage determination of oligosaccharides. Anal. Chim. Acta. 1995, 307, 431–447.CrossRefGoogle Scholar
  29. 29.
    Saad, O. M.; Leary, J. A. Delineating mechanisms of dissociation for isomeric heparin disaccharides using isotope labeling and ion trap tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 1274–1286.CrossRefGoogle Scholar
  30. 30.
    Pfenninger, A.; Karas, M.; Finke, B.; Stahl, B. Structural analysis of underivatized neutral human milk oligosaccharides in the negative ion mode by nano-electrospray MS(n). Part 1: Methodology. J. Am. Soc. Mass Spectrom. 2002, 13, 1331–1340.CrossRefGoogle Scholar
  31. 31.
    Pfenninger, A.; Karas, M.; Finke, B.; Stahl, B. Structural analysis of underivatized neutral human milk oligosaccharides in the negative ion mode by nano-electrospray MS(n). Part 2: Application to isomeric mixtures. J. Am. Soc. Mass Spectrom. 2002, 13, 1341–1348.CrossRefGoogle Scholar
  32. 32.
    Cheng, H. L.; Her, G. R. Determination of linkages of linear and branched oligosaccharides using closed-ring chromophore labeling and negative ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2002, 13, 1322–1330.CrossRefGoogle Scholar
  33. 33.
    Chai, W.; Piskarev, V.; Lawson, A. M. Branching pattern and sequence analysis of underivatized oligosaccharides by combined MS/MS of singly and doubly charged molecular ions in negative-ion electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 2002, 13, 670–679.CrossRefGoogle Scholar
  34. 34.
    Chai, W.; Piskarev, V. E.; Zhang, Y.; Lawson, A. M.; Kogelberg, H. Structural determination of novel lacto-N-decaose and its monofucosylated analogue from human milk by electrospray tandem mass spectrometry and 1H NMR spectroscopy. Arch. Biochem. Biophys. 2005, 434, 116–127.CrossRefGoogle Scholar
  35. 35.
    Kogelberg, H.; Piskarev, V. E.; Zhang, Y.; Lawson, A. M.; Chai, W. Determination by electrospray mass spectrometry and 1H-NMR spectroscopy of primary structures of variously fucosylated neutral oligosaccharides based on the iso-lacto-N-octaose core. Eur. J Biochem. 2004, 271, 1172–1186.CrossRefGoogle Scholar
  36. 36.
    Harvey, D. J. Fragmentation of negative ions from carbohydrates. Part 2. fragmentation of high-mannose N-linked glycans. J. Am. Soc. Mass Spectrom. 2005, 16, 631–646.CrossRefGoogle Scholar
  37. 37.
    Harvey, D. J. Fragmentation of negative ions from carbohydrates. Part 3. fragmentation of hybrid and complex N-linked glycans. J. Am. Soc. Mass Spectrom. 2005, 16, 647–659.CrossRefGoogle Scholar
  38. 38.
    Meisen, I.; Peter-Katalinic, J.; Muthing, J. Discrimination of neolacto-series gangliosides with α2-3- and α2-6-linked N-acetylneuraminic acid by nanoelectrospray ionization low-energy collision-induced dissociation tandem quadrupole TOF MS. Anal. Chem. 2003, 75, 5719–5725.CrossRefGoogle Scholar
  39. 39.
    Wheeler, S. F.; Harvey, D. J. Negative ion mass spectrometry of sialylated carbohydrates: Discrimination of N-acetylneuraminic acid linkages by MALDI-TOF and ESI-TOF mass spectrometry. Anal. Chem. 2000, 72, 5027–5039.CrossRefGoogle Scholar
  40. 40.
    Chai, W.; Piskarev, V. E.; Mulloy, B.; Liu, Y.; Evans, P. G.; Osborn, H. M. I.; Lawson, A. M. Analysis of chain and blood group type and branching pattern of sialylated oligosaccharides by negative ion electrospray tandem mass spectrometry. Anal. Chem. 2006, 78, 1581–1592.CrossRefGoogle Scholar
  41. 41.
    Yamagaki, T.; Nakanishi, H. A new technique distinguishing α2-3 sialyl linkage from α2-6 linkage in sialyllactoses and sialyl-N-acetyllactosamines by post-source decay fragmentation method of MALDI-TOF mass spectrometry. Glycoconj. J. 1999, 16, 385–389.CrossRefGoogle Scholar
  42. 42.
    Harvey, D. J. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom. Rev. 1999, 18, 349–450.CrossRefGoogle Scholar
  43. 43.
    Karas, M.; Bahr, U.; Dulcks, T. Nano-electrospray ionization mass spectrometry: Addressing analytical problems beyond routine. Fresenius J. Anal. Chem. 2000, 366, 669–676.CrossRefGoogle Scholar
  44. 44.
    Cech, N. B.; Enke, C. G. Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 2001, 20, 362–387.CrossRefGoogle Scholar
  45. 45.
    Karlsson, N. G.; Karlsson, H.; Hansson, G. C. Strategy for the investigation of O-linked oligosaccharides from mucins based on the separation into neutral, sialic acid- and sulfate-containing species. Glycoconj. J. 1995, 12, 69–76.CrossRefGoogle Scholar
  46. 46.
    Wheeler, S. F.; Harvey, D. J. Extension of the in-gel release method for structural analysis of neutral and sialylated N-linked glycans to the analysis of sulfated glycans: Application to the glycans from bovine thyroid-stimulating hormone. Anal. Biochem. 2001, 296, 96–100.CrossRefGoogle Scholar
  47. 47.
    Sekiya, S.; Wada, Y.; Tanaka, K. Derivatization for stabilizing sialic acids in MALDI-MS. Anal. Chem. 2005, 77, 4962–4968.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  • Jennifer L. Seymour
    • 1
  • Catherine E. Costello
    • 1
  • Joseph Zaia
    • 1
  1. 1.Department of Biochemistry, Mass Spectrometry ResourceBoston University School of MedicineBostonUSA

Personalised recommendations