Identification of mammalian cell lines using MALDI-TOF and LC-ESI-MS/MS mass spectrometry

  • Xu Zhang
  • Mark Scalf
  • Travis W. Berggren
  • Michael S. Westphall
  • Lloyd M. Smith


Direct mass spectrometric analysis of complex biological samples is becoming an increasingly useful technique in the field of proteomics. Matrix-assisted laser desorption/ionization mass spectroscopy (MALDI-MS) is a rapid and sensitive analytical tool well suited for obtaining molecular weights of peptides and proteins from complex samples. Here, a fast and simple approach to cellular protein profiling is described in which mammalian cells are lysed directly in the MALDI matrix 2,5-dihydroxybenzoic acid (DHB) and mass analyzed using MALDI-time of flight (TOF). Using the unique MALDI mass spectral “fingerprint” generated in these analyses, it is possible to differentiate among several different mammalian cell lines. A number of techniques, including MALDI-post source decay (PSD), MALDI tandem time-of-flight (TOF-TOF), MALDI-Fourier transform ion cyclotron resonance (FTICR), and nanoflow liquid chromatography followed by electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS) were employed to attempt to identify the proteins represented in the MALDI spectra. Performing a tryptic digestion of the supernatant of the cells lysed in DHB with subsequent LC-ESI-MS/MS analysis was by far the most successful method to identify proteins.


  1. 1.
    Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, F. Matrix-Assisted Ultraviolet-Laser Desorption of Nonvolatile Compounds. Int. J. Mass Spectrom. Ion Processes 1987, 78(), 53–68.CrossRefGoogle Scholar
  2. 2.
    Karas, M.; Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons. Anal. Chem. 1988, 60(20), 2299–2301.CrossRefGoogle Scholar
  3. 3.
    Krishnamurthy, T.; Ross, P. L. Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells. Rapid Commun. Mass Spectrom. 1996, 10(15), 1992–1996.CrossRefGoogle Scholar
  4. 4.
    Krishnamurthy, T.; Rajamani, U.; Ross, P. L.; Janhour, R.; Nair, H.; Eng, J.; Yates, J.; Davis, M. T.; Stahl, D. C.; Lee, T. D. Mass spectral investigations on microorganisms. J. Toxicol. Toxin Rev. 2000, 19(1), 95–117.CrossRefGoogle Scholar
  5. 5.
    Warscheid, B.; Fenselau, C. A targeted proteomics approach to the rapid identification of bacterial cell mixtures by matrix-assisted laser desorption/ionization mass spectrometry. Proteomics 2004, 4(10), 2877–2892.CrossRefGoogle Scholar
  6. 6.
    English, R. D.; Warscheid, B.; Fenselau, C.; Cotter, R. J. Bacillus spore identification via proteolytic peptide mapping with a miniaturized MALDI TOF mass spectrometer. Anal. Chem. 2003, 75(24), 6886–6893.CrossRefGoogle Scholar
  7. 7.
    Krishnamurthy, T.; Ross, P. L.; Rajamani, U. Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1996, 10(8), 883–888.CrossRefGoogle Scholar
  8. 8.
    Vaidyanathan, S.; Winder, C. L.; Wade, S. C.; Kell, D. B.; Goodacre, R. Sample preparation in matrix-assisted laser desorption ionization mass spectrometry of whole bacterial cells and the detection of high mass (> 20 kDa) proteins. Rapid Commun. Mass Spectrom. 2002, 16(13), 1276–1286.CrossRefGoogle Scholar
  9. 9.
    Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 1999, 17(10), 994–999.CrossRefGoogle Scholar
  10. 10.
    Smolka, M. B.; Zhou, H. L.; Purkayastha, S.; Aebersold, R. Optimization of the isotope-coded affinity tag-labeling procedure for quantitative proteome analysis. Anal. Biochem. 2001, 297(1), 25–31.CrossRefGoogle Scholar
  11. 11.
    Gygi, S. P.; Rist, B.; Griffin, T. J.; Eng, J.; Aebersold, R. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J. Proteome Res. 2002, 1(1), 47–54.CrossRefGoogle Scholar
  12. 12.
    Han, D. K.; Eng, J.; Zhou, H. L.; Aebersold, R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 2001, 19(10), 946–951.CrossRefGoogle Scholar
  13. 13.
    Thomson, S. T. II; Figeys, D. O-18 Labeling: A tool for proteomics. Rapid Commun. Mass Spectrom. 2001, 15(24), 2456–2465.CrossRefGoogle Scholar
  14. 14.
    Yao, X. D.; Freas, A.; Ramirez, J.; Demirev, P. A.; Fenselau, C. Proteolytic O-18 labeling for comparative proteomics: Model studies with two serotypes of adenovirus. Anal. Chem. 2001, 73(13), 2836–2842.CrossRefGoogle Scholar
  15. 15.
    Mirgorodskaya, O. A.; Kozmin, Y. P.; Titov, M. I.; Korner, R.; Sonksen, C. P.; Roepstorff, P. Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using O-18-labeled internal standards. Rapid Commun. Mass Spectrom. 2000, 14(14), 1226–1232.CrossRefGoogle Scholar
  16. 16.
    Hunt, A. N.; Clark, G. T.; Neale, J. R.; Postle, A. D. A comparison of the molecular specificities of whole cell and endonuclear phosphatidylcholine synthesis. FEBS Lett. 2002, 530(1/3), 89–93.CrossRefGoogle Scholar
  17. 17.
    Washburn, M. P.; Ulaszek, R.; Deciu, C.; Schieltz, D. M.; Yates, J. R. Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal. Chem. 2002, 74(7), 1650–1657.CrossRefGoogle Scholar
  18. 18.
    Oda, Y.; Huang, K.; Cross, F. R.; Cowburn, D.; Chait, B. T. Accurate quantitation of protein expression and site-specific phosphorylation. Proceedings of the National Academy of Sciences of the United States of America; 1999; pp 6591–6596.CrossRefGoogle Scholar
  19. 19.
    Goshe, M. B.; Smith, R. D. Stable isotope-coded proteomic mass spectrometry. Curr. Opin. Biotechnol. 2003, 14(1), 101–109.CrossRefGoogle Scholar
  20. 20.
    Wright, G. L.; Cazares, L. H.; Leung, S. M.; Nasim, S.; Adam, B. L.; Yip, T. T.; Schellhammer, P. F.; Gong, L.; Vlahou, A. Proteinchip((R)) surface enhanced laser desorption/ionization (SELDI) mass spectrometry: A novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures. Prostate Cancer Prostatic Dis. 1999, 2(5/6), 264–276.Google Scholar
  21. 21.
    Reyzer, M. L.; Caldwell, R. L.; Dugger, T. C.; Forbes, J. T.; Ritter, C. A.; Guix, M.; Arteaga, C. L.; Caprioli, R. M. Early changes in protein expression detected by mass spectrometry predict tumor response to molecular therapeutics. Cancer Res. 2004, 64(24), 9093–9100.CrossRefGoogle Scholar
  22. 22.
    Wiesner, A. Detection of tumor markers with ProteinChip((R)) technology. Curr. Pharmaceut. Biotechnol. 2004, 5(1), 45–67.CrossRefGoogle Scholar
  23. 23.
    Sun, Z. H.; Fu, X. L.; Zang, L.; Yang, X. L.; Liu, F. Z.; Hu, G. X. A protein chip system for parallel analysis of multi-tumor markers and its application in cancer detection. Anticancer Res. 2004, 24(2C), 1159–1165.Google Scholar
  24. 24.
    Shiwa, M.; Nishimura, Y.; Wakatabe, R.; Fukawa, A.; Arikuni, H.; Ota, H.; Kato, Y.; Yamori, T. Rapid discovery and identification of a tissue-specific tumor biomarker from 39 human cancer cell lines using the SELDI ProteinChip platform. Biochem. Biophys. Res. Commun. 2003, 309(1), 18–25.CrossRefGoogle Scholar
  25. 25.
    Nielsen, P. A.; Olsen, J. V.; Podtelejnikov, A. V.; Andersen, J. R.; Mann, M.; Wisniewski, J. R. Proteomic mapping of brain plasma membrane proteins. Mol. Cell. Proteom. 2005, 4(4), 402–408.CrossRefGoogle Scholar
  26. 26.
    Gruhler, A.; Olsen, J. V.; Mohammed, S.; Mortensen, P.; Faergeman, N. J.; Mann, M.; Jensen, O. N. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell. Proteom. 2005, 4(3), 310–327.CrossRefGoogle Scholar
  27. 27.
    Cantin, G. T. Yates, J: R. Strategies for shotgun identification of post-translational modifications by mass spectrometry. J. Chromatogr. A 2004, 1053(1/2), 7–14.CrossRefGoogle Scholar
  28. 28.
    Chang, E. J.; Archambault, V.; McLachlin, D. T.; Krutchinsky, A. N.; Chait, B. T. Analysis of protein phosphorylation by hypothesis-driven multiple-stage mass spectrometry. Anal. Chem. 2004, 76(15), 4472–4483.CrossRefGoogle Scholar
  29. 29.
    Peng, J. M.; Schwartz, D.; Elias, J. E.; Thoreen, C. C.; Cheng, D. M.; Marsischky, G.; Roelofs, J.; Finley, D.; Gygi, S. P. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 2003, 21(8), 921–926.CrossRefGoogle Scholar
  30. 30.
    Denison, C.; Rudner, A. D.; Gerber, S. A.; Bakalarski, C. E.; Moazed, D.; Gygi, S. P. A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol. Cell. Proteom. 2005, 4(3), 246–254.CrossRefGoogle Scholar
  31. 31.
    Wright, M. E.; Han, D. K.; Aebersold, R. Mass spectrometry-based expression profiling of clinical prostate cancer. Mol. Cell. Proteom. 2005, 4(4), 545–554.CrossRefGoogle Scholar
  32. 32.
    Denison, C.; Kirkpatrick, D. S.; Gygi, S. P. Proteomic insights into ubiquitin and ubiquitin-like proteins. Curr. Opin. Chem. Biol. 2005, 9(1), 69–75.CrossRefGoogle Scholar
  33. 33.
    Mann, M.; Jensen, O. N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 2003, 21(3), 255–261.CrossRefGoogle Scholar
  34. 34.
    Mann, M.; Ong, S. E.; Gronborg, M.; Steen, H.; Jensen, O. N.; Pandey, A. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol. 2002, 20(6), 261–268.CrossRefGoogle Scholar
  35. 35.
    McLachlin, D. T.; Chait, B. T. Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr. Opin. Chem. Biol. 2001, 5(5), 591–602.CrossRefGoogle Scholar
  36. 36.
    Gygi, S. P.; Rist, B.; Aebersold, R. Measuring gene expression by quantitative proteome analysis. Curr. Opin. Biotechnol. 2000, 11(4), 396–401.CrossRefGoogle Scholar
  37. 37.
    Kuster, B.; Mann, M. Identifying proteins and post-translational modifications by mass spectrometry. Curr. Opin. Struct. Biol. 1998, 8(3), 393–400.CrossRefGoogle Scholar
  38. 38.
    Hixson, K. K.; Rodriguez, N.; Camp, D. G.; Strittmatter, E. F.; Lipton, M. S.; Smith, R. D. Evaluation of enzymatic digestion and liquid chromatography-mass spectrometry peptide mapping of the integral membrane protein bacteriorhodopsin. Electrophoresis 2002, 23(18), 3224–3232.CrossRefGoogle Scholar
  39. 39.
    Blonder, J.; Goshe, M. B.; Moore, R. J.; Pasa-Tolic, L.; Masselon, C. D.; Lipton, M. S.; Smith, R. D. Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. J. Proteome Res. 2002, 1(4), 351–360.CrossRefGoogle Scholar
  40. 40.
    Wu, C. C.; MacCoss, M. J.; Howell, K. E.; Yates, J. R. A method for the comprehensive proteomic analysis of membrane proteins. Nat. Biotechnol. 2003, 21(5), 532–538.CrossRefGoogle Scholar
  41. 41.
    Chen, Y. J.; Wall, D.; Lubman, D. M. Rapid identification and screening of proteins from whole cell lysates of human erythroleukemia cells in the liquid phase, using non-porous reversed phase high-performance liquid chromatography separations of proteins followed by multi-assisted laser desorption/ionization mass spectrometry analysis and sequence database searching. Rapid Commun. Mass Spectrom. 1998, 12(24), 1994–2003.CrossRefGoogle Scholar
  42. 42.
    van Adrichem, J. H. M.; Bornsen, K. O.; Conzelmann, H.; Gass, M. A. S.; Eppenberger, H.; Kresbach, G. M.; Ehrat, M.; Leist, C. H. Investigation of protein patterns in mammalian cells and culture supernatants by matrix assisted laser desorption/ionization mass spectrometry. Anal. Chem. 1998, 70(5), 923–930.CrossRefGoogle Scholar
  43. 43.
    Shetty, J.; Diekman, A. B.; Jayes, F. C. L.; Sherman, N. E.; Naaby-Hansen, S.; Flickinger, C. J.; Herr, J. C. Differential extraction and enrichment of human sperm surface proteins in a proteome: Identification of immunocontraceptive candidates. Electrophoresis 2001, 22(14), 3053–3066.CrossRefGoogle Scholar
  44. 44.
    Ji, J. Y.; Chakraborty, A.; Geng, M.; Zhang, X.; Amini, A.; Bina, M.; Regnier, F. Strategy for qualitative and quantitative analysis in proteomics based on signature peptides. J. Chromatogr. B 2000, 745(1), 197–210.CrossRefGoogle Scholar
  45. 45.
    Amini, A.; Chakraborty, A.; Regnier, F. E. Simplification of complex tryptic digests for capillary electrophoresis by affinity selection of histidine-containing peptides with immobilized metal ion affinity chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2002, 772(1), 35–44.CrossRefGoogle Scholar
  46. 46.
    Salomon, A. R.; Ficarro, S. B.; Brill, L. M.; Brinker, A.; Phung, Q. T.; Ericson, C.; Sauer, K.; Brock, A.; Horn, D. M.; Schultz, P. G.; Peters, E. C. Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America; 2003, 100(2), 443–448.CrossRefGoogle Scholar
  47. 47.
    Brill, L. M.; Salomon, A. R.; Ficarro, S. B.; Mukherji, M.; Stettler-Gill, M.; Peters, E. C. Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry. Anal. Chem. 2004, 76(10), 2763–2772.CrossRefGoogle Scholar
  48. 48.
    Arnott, D.; Kishiyama, A.; Luis, E. A.; Ludlum, S. G.; Marsters, J. C.; Stults, J. T. Selective detection of membrane proteins without antibodies—A mass spectrometric version of the Western blot. Mol. Cell. Proteom. 2002, 1(2), 148–156.CrossRefGoogle Scholar
  49. 49.
    Henzel, W. J.; Billeci, T. M.; Stults, J. T.; Wong, S. C.; Grimley, C.; Watanabe, C. Identifying Proteins from 2-Dimensional Gels by Molecular Mass Searching of Peptide-Fragments in Protein-Sequence Databases. Proceedings of the National Academy of Sciences of the United States of America; 1993; pp 5011–5015.CrossRefGoogle Scholar
  50. 50.
    Shevchenko, A.; Jensen, O. N.; Podtelejnikov, A. V.; Sagliocco, F.; Wilm, M.; Vorm, O.; Mortensen, P.; Boucherie, H.; Mann, M. Linking genome and proteome by mass spectrometry: Large-scale identification of yeast proteins from two dimensional gels. Proceedings of the National Academy of Sciences of the United States of America; 1996; pp 14440–14445.CrossRefGoogle Scholar
  51. 51.
    Gygi, S. P.; Corthals, G. L.; Zhang, Y.; Rochon, Y.; Aebersold, R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proceedings of the National Academy of Sciences of the United States of America; 2000; pp 9390–9395.CrossRefGoogle Scholar
  52. 52.
    Simpson, D. C.; Smith, R. D. Combining capillary electrophoresis with mass spectrometry for applications in proteomics. Electrophoresis 2005, 26(7/8), 1291–1305.CrossRefGoogle Scholar
  53. 53.
    Link, A. J.; Eng, J.; Schieltz, D. M.; Carmack, E.; Mize, G. J.; Morris, D. R.; Garvik, B. M.; Yates, J. R. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 1999, 17(7), 676–682.CrossRefGoogle Scholar
  54. 54.
    Washburn, M. P.; Wolters, D.; Yates, J. R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 2001, 19(3), 242–247.CrossRefGoogle Scholar
  55. 55.
    Peng, J. M.; Elias, J. E.; Thoreen, C. C.; Licklider, L. J.; Gygi, S. P. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: The yeast proteome. J. Proteome Res. 2003, 2(1), 43–50.CrossRefGoogle Scholar
  56. 56.
    Barnidge, D. R.; Tschumper, R. C.; Jelinek, D. F.; Muddiman, D. C.; Kay, N. E. Protein expression profiling of CLL B cells using replicate off-line strong cation exchange chromatography and LC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 819(1), 33–39.CrossRefGoogle Scholar
  57. 57.
    Chiu, D. T.; Wilson, C. F.; Ryttsen, F.; Stromberg, A.; Farre, C.; Karlsson, A.; Nordholm, S.; Gaggar, A.; Modi, B. P.; Moscho, A.; Garza-Lopez, R. A.; Orwar, O.; Zare, R. N. Chemical transformations in individual ultrasmall biomimetic containers. Science 1999, 283(5409), 1892–1895.CrossRefGoogle Scholar
  58. 58.
    Stromberg, A.; Karlsson, A.; Ryttsen, F.; Davidson, M.; Chiu, D. T.; Orwar, O. Microfluidic device for combinatorial fusion of liposomes and cells. Anal. Chem. 2001, 73(1), 126–130.CrossRefGoogle Scholar
  59. 59.
    Garden, R. W.; Moroz, L. L.; Moroz, T. P.; Shippy, S. A.; Sweedler, J. V. Excess salt removal with matrix rinsing: Direct peptide profiling of neurons from marine invertebrates using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J. Mass Spectrom. 1996, 31(10), 1126–1130.CrossRefGoogle Scholar
  60. 60.
    Shimizu, M.; Ojima, N.; Ohnishi, H.; Shingaki, T.; Hirakawa, Y.; Masujima, T. Development of the single-cell MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass-spectroscopic assay. Anal. Sci. 2003, 19(1), 49–53.CrossRefGoogle Scholar
  61. 61.
    Wheeler, A. R.; Throndset, W. R.; Whelan, R. J.; Leach, A. M.; Zare, R. N.; Liao, Y. H.; Farrell, K.; Manger, I. D.; Daridon, A. Microfluidic device for single-cell analysis. Anal. Chem. 2003, 75(14), 3581–3586.CrossRefGoogle Scholar
  62. 62.
    Hu, S.; Zhang, L.; Newitt, R.; Aebersold, R.; Kraly, J. R.; Jones, M.; Dovichi, N. J. Identification of proteins in single-cell capillary electrophoresis fingerprints based on comigration with standard proteins. Anal. Chem. 2003, 75(14), 3502–3505.CrossRefGoogle Scholar
  63. 63.
    Hu, S.; Michels, D. A.; Fazal, M. A.; Ratisoontorn, C.; Cunningham, M. L.; Dovichi, N. J. Capillary sieving electrophoresis/micellar electrokinetic capillary chromatography for two-dimensional protein fingerprinting of single mammalian cells. Anal. Chem. 2004, 76(14), 4044–4049.CrossRefGoogle Scholar
  64. 64.
    Xiao, Y. X.; Feng, Y. P.; Da, S. L.; Yeung, E. S. Progress in single-cell analysis by capillary electrophoresis. Prog. Chem. 2004, 16(4), 543–553.Google Scholar
  65. 65.
    Hummon, A. B.; Sweedler, J. V.; Corbin, R. W. Discovering new neuropeptides using single-cell mass spectrometry. Trac-Trends Anal. Chem. 2003, 22(9), 515–521.CrossRefGoogle Scholar
  66. 66.
    Li, L. J.; Garden, R. W.; Romanova, E. V.; Sweedler, J. V. In situ sequencing of peptides from biological tissues and single cells using MALDI-PSD/CID analysis. Anal. Chem. 1999, 71(24), 5451–5458.CrossRefGoogle Scholar
  67. 67.
    Li, L. J.; Garden, R. W.; Sweedler, J. V. Single-cell MALDI: A new tool for direct peptide profiling. Trends Biotechnol. 2000, 18(4), 151–160.CrossRefGoogle Scholar
  68. 68.
    Koeffler, H. P.; Golde, D. W. Human Myeloid-Leukemia Cell Lines—A Review. Blood. 1980, 56(3), 344–350.Google Scholar
  69. 69.
    Chen, X. Y.; Westphall, M. S.; Smith, L. M. Mass spectrometric analysis of DNA mixtures: Instrumental effects are responsible for decreased sensitivity with increasing mass. Abstracts Am. Chem. Soc. 2003, 226, U112.Google Scholar
  70. 70.
    Li, L. J.; Romanova, E. V.; Rubakhin, S. S.; Alexeeva, V.; Weiss, K. R.; Vilim, F. S.; Sweedler, J. V. Peptide profiling of cells with multiple gene products: Combining immunochemistry and MALDI mass spectrometry with on-plate microextraction. Anal. Chem. 2000, 72(16), 3867–3874.CrossRefGoogle Scholar
  71. 71.
    Strohl, W. A. Role of Cell Cycle in Abortive Infection of Bhk21 Cells with an Oncogenic Adenovirus. Proceedings of the American Association for Cancer Research; Boston, MA, April 1970; p 77.Google Scholar
  72. 72.
    Marshall, A. G.; Wang, T. C. L.; Ricca, T. L. Tailored Excitation for Fourier-Transform Ion-Cyclotron Resonance Mass-Spectrometry. J. Am. Chem. Soc. 1985, 107(26), 7893–7897.CrossRefGoogle Scholar
  73. 73.
    Guan, S. H.; Marshall, A. G. Stored waveform inverse Fourier transform (SWIFT) ion excitation in trapped-ion mass spectrometry: Theory and applications. Int. J. Mass Spectrom. Ion Processes 1996, 158, 5–37.CrossRefGoogle Scholar
  74. 74.
    Wang, T. C. L.; Ricca, T. L.; Marshall, A. G. Extension of Dynamic-Range in Fourier-Transform Ion-Cyclotron Resonance Mass-Spectrometry via Stored Wave-Form Inverse Fourier-Transform Excitation. Anal. Chem. 1986, 58(14), 2935–2938.CrossRefGoogle Scholar
  75. 75.
    Chen, L.; Marshall, A. G. Stored Wave-Form Simultaneous Mass-Selective Ejection Excitation for Fourier-Transform Ion-Cyclotron Resonance Mass-Spectrometry. Int. J. Mass Spectrom. Ion Processes 1987, 79(1), 115–125.CrossRefGoogle Scholar
  76. 76.
    Flora, J. W.; Hannis, J. C.; Muddiman, D. C. High-mass accuracy of product ions produced by SORI-CID using a dual electrospray ionization source coupled with FTICR mass spectrometry. Anal. Chem. 2001, 73(6), 1247–1251.CrossRefGoogle Scholar
  77. 77.
    Guo, X. H.; Grutzmacher, H. F.; Nibbering, N. M. M. Reactivity and structures of hydrogenated carbon cluster ions CnHx+ (n=8, 20; x=4−12) derived from polycyclic aromatic hydrocarbons toward benzene: Ion/molecule reactions as a probe for ion structures. Eur. J. Mass Spectrom. 2000, 6(4), 357–367.CrossRefGoogle Scholar
  78. 78.
    Gauthier, J. W.; Trautman, T. R.; Jacobson, D. B. Sustained Off-Resonance Irradiation for Collision-Activated Dissociation Involving Fourier-Transform Mass-Spectrometry Collision-Activated Dissociation Technique that Emulates Infrared Multiphoton Dissociation. Anal. Chim. Acta. 1991, 246(1), 211–225.CrossRefGoogle Scholar
  79. 79.
    Tsybin, Y. O.; Witt, M.; Baykut, G.; Hakansson, P. Electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry in the electron energy range 0–50 eV. Rapid Commun. Mass Spectrom. 2004, 18(14), 1607–1613.CrossRefGoogle Scholar
  80. 80.
    Gorshkov, M. V.; Masselon, C. D.; Nikolaev, E. N.; Udseth, H. R.; Pasa-Tolic, L.; Smith, R. D. Considerations for electron capture dissociation efficiency in FTICR mass spectrometry. Int. J. Mass Spectrom. 2004, 234(1/3), 131–136.CrossRefGoogle Scholar
  81. 81.
    Stensballe, A.; Jensen, O. N.; Olsen, J. V.; Haselmann, K. F.; Zubarev, R. A. Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun. Mass Spectrom. 2000, 14(19), 1793–1800.CrossRefGoogle Scholar
  82. 82.
    Hakansson, K.; Emmett, M. R.; Hendrickson, C. L.; Marshall, A. G. High-sensitivity electron capture dissociation tandem FTICR mass spectrometry of microelectrosprayed peptides. Anal. Chem. 2001, 73(15), 3605–3610.CrossRefGoogle Scholar
  83. 83.
    Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America; 2004; pp 9528–9533.CrossRefGoogle Scholar
  84. 84.
    Coon, J. J.; Shabanowitz, J.; Hunt, D. F.; Syka, J. E. P. Electron transfer dissociation of peptide anions. J. Am. Soc. Mass Spectrom. 2005, 16(6), 880–882.CrossRefGoogle Scholar
  85. 85.
    Lin, M.; Campbell, J. M.; Mueller, D. R.; Wirth, U. Intact protein analysis by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17(16), 1809–1814.CrossRefGoogle Scholar
  86. 86.
    Sadygov, R. G.; Cociorva, D.; Yates, J. R. Large-scale database searching using tandem mass spectra: Looking up the answer in the back of the book. Nat. Methods. 2004, 1(3), 195–202.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  • Xu Zhang
    • 1
  • Mark Scalf
    • 1
  • Travis W. Berggren
    • 1
  • Michael S. Westphall
    • 1
  • Lloyd M. Smith
    • 1
  1. 1.Department of ChemistryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations