Application of a linear ion trap/orbitrap mass spectrometer in metabolite characterization studies: Examination of the human liver microsomal metabolism of the non-tricyclic anti-depressant nefazodone using data-dependent accurate mass measurements

  • Scott M. Peterman
  • Nicholas Duczak
  • Amit S. Kalgutkar
  • Mary E. Lame
  • John R. Soglia
Articles

Abstract

We report herein, facile metabolite identification workflow on the anti-depressant nefazodone, which is derived from accurate mass measurements based on a single run/experimental analysis. A hybrid LTQ/orbitrap mass spectrometer was used to obtain accurate mass full scan MS and MS/MS in a data-dependent fashion to eliminate the reliance on a parent mass list. Initial screening utilized a high mass tolerance (∼10 ppm) to filter the full scan MS data for previously reported nefazodone metabolites. The tight mass tolerance reduces or eliminates background chemical noise, dramatically increasing sensitivity for confirming or eliminating the presence of metabolites as well as isobaric forms. The full scan accurate mass analysis of suspected metabolites can be confirmed or refuted using three primary tools: (1) predictive chemical formula and corresponding mass error analysis, (2) rings-plus-double bonds, and (3) accurate mass product ion spectra of parent and suspected metabolites. Accurate mass characterization of the parent ion structure provided the basis for assessing structural assignment for metabolites. Metabolites were also characterized using parent product ion m/z values to filter all tandem mass spectra for identification of precursor ions yielding similar product ions. Identified metabolite parent masses were subjected to chemical formula calculator based on accurate mass as well as bond saturation. Further analysis of potential nefazodone metabolites was executed using accurate mass product ion spectra. Reported mass measurement errors for all full scan MS and MS/MS spectra was <3 ppm, regardless of relative ion abundance, which enabled the use of predictive software in determining product ion structure. The ability to conduct biotransformation profiling via tandem mass spectrometry coupled with accurate mass measurements, all in a single experimental run, is clearly one of the most attractive features of this methodology.

References

  1. 1.
    Watt, A. P.; Mortishire-Smith, R. J.; Gerhard, U.; Thomas, S. R. Metabolite Identification in Drug Discovery. Curr. Opin. Drug Discov. Dev. 2003, 6(1), 57–65.Google Scholar
  2. 2.
    Kalgutkar, A. S.; Soglia, J. R. Minimizing the Potential for Metabolic Activation in Drug Discovery. Exp. Opin. Drug Metab. Toxicol. 2005, 1,(1), 91–141.CrossRefGoogle Scholar
  3. 3.
    Liu, D. Q.; Hop, C. E. C. A. Strategies for Characterization of Drug Metabolites Using Liquid Chromatography-Tandem Mass Spectrometry in Conjunction with Chemical Derivatization and On-Line H/D Exchange Approaches. J. Pharm. Biomed. Anal. 2005, 37(1), 1–18.CrossRefGoogle Scholar
  4. 4.
    Hop, C. E. C. A.; Yu, X.; Xu, X.; Singh, R.; Wong, B. K. Elucidation of Fragmentation Mechanisms Involving Transfer of Three Hydrogen Atoms Using a Quadrupole Time-of-Flight Mass Spectrometer. J. Mass Spectrom. 2001, 36(5), 575–579.CrossRefGoogle Scholar
  5. 5.
    Yin, W.; Doss, G. A.; Stearns, R. A.; Chaudhary, A. G.; Hop, C. E.; Frankin, R. B.; Kumar, S. A Novel P450-Catalyzed Transformation of the 2,2,6,6-Tetramethyl Piperidine Moiety to a 2,2-Dimethyl Pyrrolidine in Human Liver Microsomes: Characterization by High Resolution Quadrupole-Time-of-Flight Mass Spectrometry and 1H-NMR. Drug Metab. Dispos. 2003, 31(2), 215–223.CrossRefGoogle Scholar
  6. 6.
    Gangl, E.; Utkin, I.; Gerber, N.; Vouros, P. Structural Elucidation of Metabolites of Ritonavir and Indinavir by Liquid Chromatography-Mass Spectrometry. J. Chromatogr. A. 2002, 974(1/2) 91–101.CrossRefGoogle Scholar
  7. 7.
    Mutlib, A. E.; Shockcor, J. P. 2003; Application of LC/MS, LC/NMR, NMR and Stable Isotopes in Identifying and Characterizing Metabolites. Lee, J. S.; Obach, R. S.; Fisher, M. B., Eds.; In Drug Metabolizing Enzymes: Cytochrome P450 and Other Enzymes in Drug Discovery and Development; 33 Marcel Dekker: New York, NY, Fontis Media: Lausanne, Switzerland.Google Scholar
  8. 8.
    Li, L.; Chiarelli, M. P.; Branco, P. S.; Marques, M. M.; Goncalves, L. L.; Beland, F. A. Differentiation of Isomeric C8-Substituted Alkylaniline Adducts of Guanine by Electrospray Ionization and Tandem Quadrupole Ion Trap Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2003, 14(12), 1488–1492.CrossRefGoogle Scholar
  9. 9.
    Hopfgartner, G.; Chernushevich, I. V.; Covey, T.; Plomley, J. B.; Bonner, R. Exact Mass Measurement of Product Ions for the Structural Elucidation of Drug Metabolites with a Tandem Quadrupole Orthogonal-Acceleration Time-of-Flight Mass Spectrometer. J. Am. Soc. Mass Spectrom. 1999, 10(12), 1305–1314.CrossRefGoogle Scholar
  10. 10.
    Deroussent, A.; Re, M.; Hoellinger, H.; Vanquelef, E.; Duval, O.; Sonnier, M.; Cresteil, T. In Vitro Metabolism of Ethoxidine by Human CYP1A1 and Rat Microsomes: Identification of Metabolites by High-Performance Liquid Chromatography Combined with Electrospray Tandem Mass Spectrometry and Accurate Mass Measurements by Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2004, 18(4), 474–482.CrossRefGoogle Scholar
  11. 11.
    Castro-Perez, J.; Plumb, R.; Granger, J. H.; Beattie, I.; Joncour, K.; Wright, A. Increasing Throughput and Information Content for in Vitro Drug Metabolism Experiments Using Ultra-Performance Liquid Chromatography Coupled to a Quadrupole Time-of-Flight Mass Spectrometer. Rapid Commun. Mass Spectrom. 2005, 19(6), 843–848.CrossRefGoogle Scholar
  12. 12.
    Hardman, M.; Makarov, A. A. Interfacing the Orbitrap Mass Analyzer to an Electrospray Ion Source. Anal. Chem. 2003, 75(7), 1699–1705.CrossRefGoogle Scholar
  13. 13.
    Thevis, M.; Makarov, A. A.; Horning, S.; Schanzer, W. Mass Spectrometry of Stanozolol and Its Analogs Using Electrospray Ionization and Collision-Induced Dissociation with Quadrupole-Linear Ion Trap and Linear Ion Trap-Orbitrap Hybrid Mass Snalyzers. Rapid Commun. Mass Spectrom. 2005, 19(22), 3369–3378.CrossRefGoogle Scholar
  14. 14.
    Mayol, R. F.; Cole, C. A.; Luke, G. M.; Colson, K. L.; Kerns, E. H. Characterization of the Metabolites of the Antidepressant Drug Nefazodone in Human Urine and Plasma. Drug Metab. Dispos. 1994, 22(2), 304–311.Google Scholar
  15. 15.
    Von Moltke, L.L.; Greenblatt, D. J.; Granda, B. W.; Grassi, J. M.; Schmider, J.; Harmatz, J. S.; Shader, R. I. Nefazodone, Meta-Chlorophenylpiperazine, and their Metabolites in Vitro: Cytochromes Mediating Transformation, and P450-3A4 Inhibitory Actions. Psychopharmacology 1999, 145(1), 113–122.CrossRefGoogle Scholar
  16. 16.
    Kalgutkar, A. S.; Vaz, A. D. N.; Lame, M. E.; Henne, K. R.; Soglia, J.; Zhao, S. X.; Abramov, Y. A.; Lombardo, F.; Collin, C.; Hendsch, Z. S.; Hop, C. E. C. A. Bioactivation of the Nontricyclic Antidepressant Nefazodone to a Reactive Quinone-Imine Species in Human Liver Microsomes and Recombinant Cytochrome P450 3A4. Drug Metab. Dispos. 2005, 33(2), 243–253.CrossRefGoogle Scholar
  17. 17.
    Jemal, M.; Ouyang, Z.; Zhao, W.; Zhu, M.; Wu, W. W. A Strategy for Metabolite Identification Using Triple-Quadrupole Mass Spectrometry with Enhanced Resolution and Accurate Mass Capability. Rapid Commun. Mass Spectrom. 2003, 17(24), 2732–2740.CrossRefGoogle Scholar
  18. 18.
    Hu, Q.; Noll, R. J.; Li, H.; Makarov, A.; Hardman, M.; Cooks, R. G. The Orbitrap: A new Mass Spectrometer. J. Mass Spectrom. 2005, 40(4), 430–443.CrossRefGoogle Scholar
  19. 19.
    McLafferty, F. W.; Turecek, F. Interpretation of Mass Spectra, 4th ed.; University Science Books: Mill Valley, CA, 1993,p 27.Google Scholar
  20. 20.
    Pittenauer, E.; Zehl, M.; Mistrik, R.; Allmaier, G. Evaluation of ESI-MSn Ion Trap and MALDI-MSn Ion Trap/Reflectron TOF Mass Spectra (n=1−3) for Incorporation into a Searchable Database. Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics Nashville, TN 2004.Google Scholar
  21. 21.
    Mistrik, R. Comprehensive Database of Mechanisms of Peptide Fragmentation: A Key Step Towards Confident Identification of Proteins Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics; Nashville, TN 2004.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  • Scott M. Peterman
    • 1
  • Nicholas Duczak
    • 1
  • Amit S. Kalgutkar
    • 2
  • Mary E. Lame
    • 2
  • John R. Soglia
    • 2
  1. 1.Thermo Electron CorporationSomersetUSA
  2. 2.Pharmacokinetics, Dynamics, and Metabolism DepartmentPfizer Global Research and DevelopmentGrotonUSA

Personalised recommendations