Sources of artefacts in the electrospray ionization mass spectra of saturated diacylglycerophosphocholines: From condensed phase hydrolysis reactions through to gas phase intercluster reactions

  • Patrick F. James
  • Matthew A. Perugini
  • Richard A. J. O’Hair
Articles

Abstract

The mass spectra of diacylglycerophosphocholine phospholipids comprised of saturated fatty acids (1,2-dipentanoyl-sn-glycero-3-phosphocholine (D5PC); 1,2-dihexanoyl-sn-glycero-3-phosphocholine (D6PC), and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (D14PC)) are sensitive to the electrospray ionization (ESI) conditions. When fresh solutions of phospholipid in 10 mM ammonium acetate are subjected to ESI, protonated oligomeric clusters, [DxPCn+H]+ (x=5, 6, and 14) are observed in the following different types of mass spectrometers: 3D-quadrupole ion trap; linear ion trap, and triple quadrupole. The formation of the protonated cluster ions is not unique to the ion trap instruments, although they tend to be more abundant in these instruments. As the ESI solutions age, new ions are observed, which correspond to acid-catalyzed solution phase deacylation reactions. The collision induced dissociation fragmentation reactions of the oligomer cluster ions exhibit a distinct dependence on the cluster size, with the larger clusters (n>2) simply fragmenting via the loss of lipid monomers. In contrast, the fragmentation of the dimeric cluster ion is unique, resulting in a number of additional reactions including covalent bond formation via intermolecular cluster SN2 reactions and SN2 transfer of a methyl group. The nature of the charge has a significant role in the formation of products via these intermolecular cluster reactions. Changing the head group to phosphoethanolamine “switches off” the SN2 reactions, while changing the cation from a proton to either a sodium or a potassium ion, diminishes the intermolecular reactions relative to monomer loss. Semi empirical PM3 calculations on [D6PC2+H]+ suggest that the SN2 reactions are thermodynamically favored over simple monomer loss. These results have important implications in the field of lipidomics.

Supplementary material

13361_2011_170300384_MOESM1_ESM.pdf (399 kb)
Supplementary material, approximately 409 KB.

References

  1. 1.(a)
    Cooks, R. G.; Patrick, J. S.; Kotiaho, T.; McLuckey, S. A. Thermochemical Determinations by the Kinetic Method. Mass Spectrom. Rev. 1994, 13, 287;CrossRefGoogle Scholar
  2. 1.(b)
    Cooks, R. G.; Koskinen, J. T.; Thomas, P. D. The Kinetic Method of Making Thermochemical Determinations. J. Mass Spectrom 1999, 34, 85.CrossRefGoogle Scholar
  3. 2.(a)
    Strittmatter, E. F.; Schnier, P. D.; Klassen, J. S.; Williams, E. R. Dissociation Energies of Deoxyribose Nucleotide Dimer Anions Measured Using Blackbody Infrared Radiative Dissociation. J. Am. Soc. Mass Spectrom. 1999, 10, 1095;CrossRefGoogle Scholar
  4. 2.(b)
    Vrkic, A. K.; O’Hair, R. A. J. Gas Phase Reactions of Trimethylborate with the [M−H] Ions of Nucleotides and Their Noncovalent Homo- and Heterodimer Complexes. Aust. J. Chem 2003, 56, 389;CrossRefGoogle Scholar
  5. 2.(c)
    Thomas, M. C.; Mitchell, T. W.; Blanksby, S. J. A Comparison of the Gas Phase Acidities of Phospholipid Headgroups: Experimental and Computational Studies. J. Am. Soc. Mass Spectrom 2005, 16,926.CrossRefGoogle Scholar
  6. 3.
    Julian, R. R.; Beauchamp, J. L. Abiotic Synthesis of ATP from AMP in the Gas Phase: Implications for the Origin of Biologically Important Molecules from Small Molecular Clusters. Int. J. Mass Spectrom. 2003, 227, 147.CrossRefGoogle Scholar
  7. 4.
    Cox, H. A.; Hodyss, R.; Beauchamp, J. L. Cluster-Phase Reactions: Gas-Phase Phosphorylation of Peptides and Model Compounds with Triphosphate Anions. J. Am. Chem. Soc. 2005, 127, 4084–4090.CrossRefGoogle Scholar
  8. 5.
    Vrkic, A. K.; O’Hair, R. A. J. Using Noncovalent Complexes to Direct the Fragmentation of Glycosidic Bonds in the Gas Phase. J. Am. Soc. Mass Spectrom. 2004, 15, 716–725.CrossRefGoogle Scholar
  9. 6.
    Gross, D. S.; Williams, E. R. On the Dissociation and Conformation of Gas-Phase Methonium Ions. Int. J. Mass Spectrom. Ion Processes. 1996, 158, 305–318.CrossRefGoogle Scholar
  10. 7.(a)
    Gronert, S.; Azebu, J. Reactions of Gas-Phase Salts: Substitutions and Eliminations in Complexes Containing a Dianion and a Tetraalklylammonium Cation. Org. Lett. 1999, 1, 503–596;CrossRefGoogle Scholar
  11. 7.(b)
    Gronert, S.; Fong, L.-M. Structural Effects on the Gas-Phase Reactivity of Organic Salt Complexes: Substitution versus Hofmann Elimination. Aust. J. Chem 2003, 56, 379–383;CrossRefGoogle Scholar
  12. 7.(c)
    Gronert, S. Gas-Phase Studies of the Competition Between Substitution and Elimination Reactions. Acc. Chem. Res 2003, 36, 848–857.CrossRefGoogle Scholar
  13. 8.
    Waters, T.; O’Hair, R. A. J.; Wedd, A. G. Catalytic Gas-Phase Oxidation of Methanol to Formaldehyde. J. Am. Chem. Soc. 2003, 125, 3384–3396.CrossRefGoogle Scholar
  14. 9.
    Gronert, S.; Fagin, A. E.; Okamoto, K. Stereoselectivity in the Collision-Activated Reactions of Gas Phase Salt Complexes. J. Am. Soc. Mass Spectrom. 2004, 15, 1509–1516.CrossRefGoogle Scholar
  15. 10.
    Hodyss, R.; Cox, H. A.; Beauchamp, J. L. Cluster Phase Reactions: Alkylation of Triphosphate and DNA Anions with Alkylammonium Cations. J. Phys. Chem. A. 2004, 108, 10030–10034.CrossRefGoogle Scholar
  16. 11.
    Harrison, K. A.; Murphy, R. C. Negative Electrospray Ionization of Glycerophosphocholine Lipids: Formation of [M−15] ions occurs via collisional decomposition of adduct anions. J. Mass Spectrom. 1995, 30, 1772–1773.CrossRefGoogle Scholar
  17. 12.(a)
    Perugini, M. A.; Schuck, P.; Howlett, G. J. Differences in the Binding Capacity of Human Apolipoprotein E3 and E4 to Size-Fractionated Lipid Emulsions. Eur. J. Biochem. 2002, 269, 5939–5949;CrossRefGoogle Scholar
  18. 12.(b)
    Perugini, M. A.; Schuck, P.; Howlett, G. J. Self-Association of Human Apolipoprotein E3 and E4 in the Presence and Absence of Phospholipid. J. Biol. Chem 2000, 275, 36758–36765.CrossRefGoogle Scholar
  19. 13.
    Hanson, C. L.; Ilag, L. L.; Malo, J.; Hatters, D. M.; Howlett, G. J.; Robinson, C. V. Phospholipid Complexation and Association with Apolipoprotein C-II: Insights from Mass Spectrometry. Biophys. J. 2003, 85, 3802–3812.CrossRefGoogle Scholar
  20. 14.(a)
    Siuzdak, G.; Bothner, B. Gas-Phase Micelles. Angew. Chem. Int. Ed. 1995, 34, 2053–2055;CrossRefGoogle Scholar
  21. 14.(b)
    Cacace, F.; De Petris, G.; Giglio, E.; Punzo, F.; Troiani, A. Bile Salt Aggregates in the Gas Phase: An Electrospray Ionization Mass Spectrometric Study. Chem. Eur. J. 2002, 8, 1925–1933.CrossRefGoogle Scholar
  22. 15.(a)
    Murphy, R. C.; Fiedler, J.; Hevko, J. Analysis of Nonvolatile Lipids by Mass Spectrometry. Chem. Rev. 2001, 101, 479–526;CrossRefGoogle Scholar
  23. 15.(b)
    Pulfer, M.; Murphy, R. C. Electrospray Mass Spectrometry of Phospholipids. Mass Spectrom. Rev. 2003, 22, 332–364;CrossRefGoogle Scholar
  24. 15.(c)
    Han, X. L.; Gross, R. W. Shotgun Lipidomics: Electrospray Ionization Mass Spectrometric Analysis and Quantitation of Cellular Lipidomes Directly from Crude Extracts of Biological Samples. Mass Spectrom. Rev 2005, 24, 367–412;CrossRefGoogle Scholar
  25. 15.(d)
    Forrester, J. S.; Milne, S. B.; Ivanova, P. T.; Brown, H. A. Computational Lipidomics: A Multiplexed Analysis of Dynamic Changes in Membrane Lipid Composition During Signal Transduction. Mol. Pharmacol 2004, 65, 813–821.CrossRefGoogle Scholar
  26. 16.(a)
    Heerklotz, H.; Epand, R. M. The Enthalpy of Acyl Chain Packing and the Apparent Water-Accessible Apolar Surface Areas of Phospholipids. Biophys. J. 2001, 80, 271–279;CrossRefGoogle Scholar
  27. 16.(b)
    Johnson, R. E.; Wells, M. A.; Rupley, J. A. Thermodynamics of Dihexanoylphospatidylcholine Aggregation. Biochem 1981, 20, 4229–4242.CrossRefGoogle Scholar
  28. 17.
    Arnhold, J.; Osipov, A. N.; Spalteholz, H.; Panasenko, O. M.; Schiller, J. Formation of Lysophospholipids from Unsaturated Phosphatidylcholines Under the Influence of Hypochlorous Acid. Biochim. Biophys. Acta 2002, 1572, 91–100.CrossRefGoogle Scholar
  29. 18.
    Ilag, L. L.; Ubarretxena-Belandia, I.; Tate, C. G.; Robinson, C. V. Drug Binding Revealed by Tandem Mass Spectrometry of a Protein-Micelle Complex. J. Am. Chem. Soc. 2004, 126, 14362–14363.CrossRefGoogle Scholar
  30. 19.
    Hsu, F.-F.; Turk, J. Charge-Driven Fragmentation Processes in Diacylglycerophosphatidic Acid Upon Low-Energy Collision Activation. A Mechanistic Proposal. J. Am. Soc. Mass Spectrom. 2000, 11, 797–803.CrossRefGoogle Scholar
  31. 20.(a)
    Hsu, F.-F.; Turk, J. Electrospray Ionization/Tandem Quadrupole Mass Spectrometric Studies on Phosphatidylcholines: The Fragmentation Processes. J. Am. Soc. Mass Spectrom. 2003, 14, 352–363;CrossRefGoogle Scholar
  32. 20.(b)
    Hsu, F.-F.; Turk, J.; Thukkani, A. K.; Messner, M. C.; Wildsmith, K. R.; Ford, D. A. Characterization of Alkylacyl, Alk-1-Enylacyl, and Lyso Subclasses of Glycerophosphocholine by Tandem Quadrupole Mass Spectrometry with Electrospray Ionization. J. Mass Spectrom. 2003, 38, 752–763.CrossRefGoogle Scholar
  33. 21.
    Stewart, J. J. P. Optimization of Parameters for Semiempirical Methods. 1. Method. J. Comput. Chem. 1989, 10, 209–220.CrossRefGoogle Scholar
  34. 22.
    Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; DuPuis, M.; Montgomery, J. A. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347–1363.CrossRefGoogle Scholar
  35. 23.(a)
    Kallies, B.; Mitzner, R. The Ability of the Semiempirical PM3 Method to Model Proton Transfer Reactions in Symmetric Hydrogen Bonded Systems. J. Mol. Model 1995, 1, 68–78;CrossRefGoogle Scholar
  36. 23.(b)
    Denisov, E. V.; Shustryakov, V.; Nikolaev, E. N.; Winkler, F. J.; Medina, R. FT ICR Investigations of Chiral Supramolecular Propellers of Dialkyltartrate Trimers with Methylammonium ions. Int. J. Mass Spectrom. Ion Processes 1997, 167/168, 259–268.CrossRefGoogle Scholar
  37. 24.
    Farrugia, J. M.; O’Hair, R. A. J. Argine Involvement of Salt Bridges in a Novel Gas Phase Rearrangement of Protonated Containing Dipeptides which Precedes Fragmentation. Int. J. Mass Spectrom. 2003, 222, 229–242 and references cited therein.CrossRefGoogle Scholar
  38. 25.
    Ham, B. M.; Cole, R. B. Determination of Bond Dissociation Energies Using Electrospray Tandem Mass Spectrometry and a Derived Effective Reaction Path Length Approach. Anal. Chem. 2005, 77, 4148–4159.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  • Patrick F. James
    • 1
    • 2
  • Matthew A. Perugini
    • 1
  • Richard A. J. O’Hair
    • 2
  1. 1.Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneVictoriaAustralia
  2. 2.School of Chemistry, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleAustralia

Personalised recommendations